Air Force Institute of Technology

Using Logic-Based Reduction for Adversarial Component Recovery*

J. Todd McDonald, Eric D. Trias, Yong C. Kim, and Michael R. Grimaila

Center for Cyberspace Research Air Force Institute of Technology

WPAFB, OH

[^0]
Outline

- Protection Context
- Polymorphic Variation as Protection
- Hiding Properties of Interest
- Framework and Experimental Results

Protection Context

- Embedded Systems / "Hardware"
- Increasingly represented as reprogrammable logic (i.e., software!)
- We used to like hardware because it offered "hard" solutions for protection (physical anti-tamper, etc.)
- Our beginning point: what happens if hardware-based protections fail?
- Hardware protection: I try to keep you from physically getting the netlist/machine code
- Software protection: I give you a netlist/machine code listing and ask you questions pertaining to some protection property of interest
- Protection/exploitation both exist in the eye of the beholder

Protection Context

- Critical military / commercial systems vulnerable to malicious reverse engineering attacks
- Financial loss
- National security risk
- Reverse Engineering and Digital Circuit Abstractions
- Architectural (Behavioral)
- Register Transfer Language (RTL)
- Gate Level
- Transistor Level
- Layout

INCREASING
DETAIL
Forward engineering \qquad Requirements

Reverse engineering

Polymorphic Variation as Protection

- Experimental Approach:
- Consider practical / real-world / theoretic circuit properties related to security
- Use a variation process to create polymorphic circuit versions
- Polymorphic = many forms of circuits with semantically equivalent or
 semantically recoverable functionality
- Characterize algorithmic effects:
- Empirically demonstrate properties
- Prove as intractable
- Prove as undecidable

Semantic Changing

Black-Box Refinement Semantic Transformation
Polymorphic Generation

What can I prove / not prove under RPM?
 \section*{ent
mation
ation
Model
 \section*{ent
mation
ation
Model

 Mont
mation
Model}

 Mont
mation
Model}

$$
\begin{aligned}
& \text { Program Encryption } \\
& \text { Random Program Model }
\end{aligned}
$$

\qquad

Obfuscation

Semantic Preserving

Polymorphic Generation

What can I measure? What can I characterize? What are the limits if I am only allowed to retain functionality?

Defining Obfuscation

- Since we can't hide all information leakage....
- Can we protect intent?
- Tampering with code in order to get specific results
- Manipulating input in order to get specific results
- Correlating input/output with environmental context
- Can we impede identical exploits on functionally equivalent versions?
- Can we define and measure any useful definition of hiding short of absolute proof and not based solely on variant size?

Hierarchy of Obfuscating Transforms

Logical View

Control Hiding
Component Hiding
Signal Hiding
Topology Hiding (Gate Replacement)

Side Channel Properties

Functional Hiding

Polymorphic Variation as Protection

Algorithm and Variant Characterization:

Selection:

1) Random
2) Deterministic
3) Mixture

Replacement

1) Random
2) Deterministic
3) Mixture

Framework and Experimental Results

- When does (random/deterministic) iterative selection and replacement:

1) Manifest hiding properties of interest?
2) Cause an adversarial reverse engineering task to become intractable or undecidable?

- What role does logic reduction and adversarial reversal play in the outcome (ongoing)
- Are there circuits which will fail despite the best variation we can produce? (yes)

Components

- Components are building block for virtually all realworld circuits
- Given:
- circuit C
- gate set G
- input set /
- integer $k>1$, where k is the number of components
- Set M of components $\left\{c_{1}, \ldots, c_{k}\right\}$ partitions G and $/$ into k disjoint sets of inputs and/or gates.
- Four base cases
- Based on input/output boundary of component and the parent circuit

Component Recovery

Develop America's Airmen Today ... for Tomorrow

Independent Components and Induced Redundancy

Develop America's Airmen Today ... for Tomorrow

ORIGINAL

WHITE-BOX VARIANTS

REDUCED VARIANTS

Observing Independent Component Hiding
 Develop America's Airmen Today ... for Tomorrow

	Variant (Obfuscated)	Reduced (Avg)	Reduced (Best)	Reduced (Worst)
Gates	1096	$173(84.22 \%)$	$158(85.58 \%)$	$185(83.12 \%)$
Levels	265	$40(84.91 \%)$	$35(86.79 \%)$	$41(84.53 \%)$

	Obfuscated	Reduced (Avg)	Reduced (Best)	Reduced (Worst)
Gates	2133	$1483(30.47 \%)$	$1474(30.90 \%)$	$1495(29.91 \%)$
Levels	614	$426(30.62 \%)$	$425(30.78 \%)$	$428(30.29 \%)$

Air University: The Intellectual and Leadership Center of the Air Force Integrity - Service - Excellence

Case Study

Develop America's Airmen Today ... for Tomorrow

	c432-c499			C432-c880			ISCAS Merge			Buffer-100			Buffer-500		
Variant Algorithm	0	S	C	0	S	C	0	S	C	0	S	C	0	S	C
Pattern Based	-	85\%	21-29\%	-	63\%	22\%	-	$\begin{array}{\|l\|} \hline 16- \\ \text { 18\% } \\ \hline \end{array}$	9\%	-	90\%	28\%	-	89\%	26\%
Size/Levels	-	89\%	24-36\%	-	72\%	24\%	-	70\%	23\%	-	93\%	29\%	-	92\%	28\%
Independent Components (pattern-based reduction)	2	2	1	2	2	1	8	1	1	100	59	15	500	253	109
Logic Cells (Quartus II)	133	155	165	173	184	185	1600	1685	nn	0	0	0	xx	xx	xx
Independent Components (as realized by Quartus II)	2	2	2	2	2		nn origin Simpl	nn	nn cuit Comp			100 not too	xx ested ig bas	xx ed on	

Develop America's Airmen Today ... for Tomorrow

Questions

Hiding Properties of Interest

General Intuition and Hardness of Obfuscation

The ONLY true "Virtual Black Box"

X 1	X 2	X 3	4	5	Y 6	Y 7
			$\operatorname{AND}(3,2)$	$\mathrm{OR}(4,1)$	$\mathrm{XOR}(4,3)$	$\mathrm{NAND}(5,6)$
0	0	0	0	0	0	1
0	0	1	0	0	1	1
0	1	0	0	0	0	1
0	1	1	1	1	0	1
1	0	0	0	1	0	1
1	0	1	0	1	1	0
1	1	0	0	1	0	1
1	1	1	1	1	0	1

"The How"

Semantic Behavior

Framework and Experimental Results

- Is perfect or near topology recovery useful (therefore, is topology hiding useful)?
- In some cases, yes
- Foundation for other properties (signal / component hiding)
- For certain attacks, it is all that is required
- Accomplishing topology hiding
- Change basis type (normalizing distributions, removing all original)
- Guarantee every gate is replaced at least once
- Multiple / overlapping replacement = diffusion Topology:

Experiment 1: Measuring "Replacement" Basis Change

Develop America's Airmen Today ... for Tomorrow
c432

c432	120 gates (4 ANDs + 79 NANDs + 19 NORs + 18 XORs + 40 inverters)
Decomposed	230 gates (60 ANDs + 151 NANDs + 19 NORs + 40 inverters)
Decomposed NOR	843 gates (843 NORs)

Experiment 1a: Measuring "Replacement" Basis Change

Develop America's Airmen Today ... for Tomorrow

$\Omega=\{N O R\} \quad \rightarrow \quad \Omega=\{A N D, N A N D, O R, X O R, N X O R\}$

Experiment 1b: Measuring "Replacement" Basis Change

Develop America's Airmen Today ... for Tomorrow

$\Omega=\{$ NAND $\} \quad \rightarrow \quad \Omega=\{A N D, N O R, O R, X O R, N X O R\}$

Air University: The Intellectual and Leadership Center of the Air Force

Experiment 2: Measuring "Replacement" Uniform Basis Distribution

Develop America's Airmen Today ... for Tomorrow

ISCAS-85 c1355

Iterative Random Selection Algorithm:

Selection Strategy:
5\% 1) Single Gate: Random
75\% 2) Two Gate: Random
5\% 3) Two Gate: Largest Level
5\% 4) Two Gate: Output Level
5\% 5) Two Gate: Random Level
5\% 6) Two Gate: Fixed Level

Replacement Strategy:
Random 6-GATE Basis

C1355	506 gates (56 ANDs + 416 NANDs + 2 ORs + 32 buffers + 40 inverters)
Decomposed	550 gates (96 ANDs + 416 NANDs + 6 ORs + 32 buffers + 40 inverters)
Decomposed NAND	730 gates (730 NANDs)

Experiment 2: Measuring "Replacement" Uniform Basis Distribution

```
\Omega={NAND} }->\mathrm{ \ ={AND, NAND, OR, NOR, XOR, NXOR }
```


"Single 4000 Iteration Experiment"

Experiment 2: Measuring "Replacement" Uniform Basis Distribution

Develop America's Airmen Today ... for Tomorrow $\Omega=\{N A N D\} \quad \rightarrow \quad$ = $\}$ AND, NAND, OR, NOR, XOR, NXOR $\}$

"Multiple 4000 Iteration Experiments"

Experiment 2: Measuring "Replacement" Uniform Basis Distribution

Develop America's Airmen Today ... for Tomorrow
$\Omega=\{N A N D\} \quad \rightarrow \quad \Omega=\{A N D, N A N D, O R, N O R, X O R, N X O R\}$

"Multiple 4000 Iteration Experiments"

Experiment 3: Measuring "Replacement" Smart Random Selection

ISCAS-85 c432

Iterative Smart Random 2-Gate Selection Algorithm:

Selection Strategy:
Smart Two Gate Random

Replacement Strategy:
Random Equivalent

Things We've Learned Along the Way

Develop America's Airmen Today ... for Tomorrow

- What algorithmic factors influence hiding properties the most?
- Iteration number
- Selection size
- Replacement circuit generation (redundant vs. non-redundant)
- Ongoing work in:
- Increasing selection size
- Determinist generation
- Integrated logic reduction
- Formal models: term rewriting systems, abstract interpretation, graph partitioning

Obfuscation Comparison Models

O ???

IND

$$
\begin{aligned}
& P_{1} \Longleftrightarrow 0 \quad 0\left(P_{1}\right) \quad P_{2} \quad \Longrightarrow O O\left(P_{2}\right) \\
& \begin{array}{lll}
P_{1} & \text { ??? } & O\left(P_{1}\right) \\
P_{2} & & O\left(P_{2}\right)
\end{array} \\
& P_{1,} P_{2} \in \delta_{f}
\end{aligned}
$$

BP

$$
\begin{aligned}
P_{1} & \Longrightarrow O \Longrightarrow O\left(P_{1}\right) \quad O\left(P_{1}\right) \Longrightarrow O \Longrightarrow O\left(O\left(P_{1}\right)\right) \\
& P_{1} \quad \text { ??? } O\left(P_{1}\right) \quad \text { ??? } O\left(O\left(P_{1}\right)\right)
\end{aligned}
$$

Experiment 1a: Measuring

\% of ORIGINAL GATES

Experiment 1a: Measuring "Replacement"

ISCAS-85 C1355 ? Intellectual and Leadership Center of the Air Force

Experiment 2: Measuring "Replacement"

Develop America's Airmen Today ... for Tomorrow

$\Omega=\{$ NAND $\} \rightarrow \Omega=\{A N D$, NAND, OR, NOR, XOR, NXOR $\}$

"Single 4000 Iteration Experiment"

Experiment 2: Measuring "Replacement"

Develop America's Airmen Today ... for Tomorrow

$\Omega=\{N A N D\} \quad \rightarrow \quad \Omega=\{A N D, N A N D, O R, N O R, X O R, N X O R\}$

"Multiple 4000 Iteration Experiments"

[^0]: *The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government

