

Air Force Institute of Technology

Develop America's Airmen Today ... for Tomorrow

Using Logic-Based Reduction for Adversarial Component Recovery*

J. Todd McDonald, Eric D. Trias, Yong C. Kim, and Michael R. Grimaila

> Center for Cyberspace Research Air Force Institute of Technology WPAFB, OH

*The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government

- Protection Context
- Polymorphic Variation as Protection
- Hiding Properties of Interest
- Framework and Experimental Results

Protection Context

Develop America's Airmen Today ... for Tomorrow

- Embedded Systems / "Hardware"
 - Increasingly represented as reprogrammable logic (i.e., software!)
 - We used to like hardware because it offered "hard" solutions for protection (physical anti-tamper, etc.)
- Our beginning point: what happens if hardware-based protections fail?
 - Hardware protection: I try to keep you from physically getting the netlist/machine code
 - Software protection: I give you a netlist/machine code listing and ask you questions pertaining to some protection property of interest
- Protection/exploitation both exist in the eye of the beholder

Protection Context

Develop America's Airmen Today ... for Tomorrow

Forward

engineering

- Critical military / commercial systems vulnerable to malicious reverse engineering attacks
 - Financial loss
 - National security risk
- Reverse Engineering and
 Digital Circuit Abstractions
 - Architectural (Behavioral)
 - Register Transfer Language (RTL)
 - Gate Level
 - Transistor Level
 - Layout

INCREASING DETAIL

Polymorphic Variation as Protection

REAL PROPERTY OF THE REAL PROP

Develop America's Airmen Today ... for Tomorrow

- Experimental Approach:
 - Consider practical / real-world / theoretic circuit properties related to security
 - Use a variation process to create polymorphic circuit versions
 - Polymorphic = many forms of circuits with semantically equivalent or semantically recoverable functionality
 - Characterize algorithmic effects:
 - Empirically demonstrate properties
 - Prove as intractable
 - Prove as undecidable

Two Roads Met in the Woods... and I Went Down Both...

Develop America's Airmen Today ... for Tomorrow

Semantic Changing

Black-Box Refinement Semantic Transformation Polymorphic Generation

Program Encryption Random Program Model

What can I prove / not prove under RPM?

Semantic Preserving

Polymorphic Generation

Obfuscation

What can I measure? What can I characterize? What are the limits if I am only allowed to retain functionality?

Defining Obfuscation

Develop America's Airmen Today ... for Tomorrow

- Since we can't hide all information leakage....
 - Can we protect intent?
 - Tampering with code in order to get specific results
 - Manipulating input in order to get specific results
 - Correlating input/output with environmental context
 - Can we impede identical exploits on functionally equivalent versions?
 - Can we define and measure any useful definition of hiding short of absolute proof and not based solely on variant size?

Manifestation

Hierarchy of Obfuscating Transforms

Develop America's Airmen Today ... for Tomorrow

Algorithm and Variant Characterization:

- When does (random/deterministic) iterative selection and replacement:
 - 1) Manifest hiding properties of interest?
 - 2) Cause an adversarial reverse engineering task to become intractable or undecidable?
- What role does logic reduction and adversarial reversal play in the outcome (ongoing)
- Are there circuits which will fail despite the best variation we can produce? (yes)

Components

Develop America's Airmen Today ... for Tomorrow

- Components are building block for virtually all realworld circuits
- Given:
 - circuit C
 - gate set G
 - input set /
 - integer *k* > 1, where *k* is the number of components
- Set *M* of components
 {*c*₁,..., *c_k*} partitions *G* and *I* into *k* disjoint sets
 of inputs and/or gates.
- Four base cases
 - Based on input/output boundary of component and the parent circuit

Component Recovery

Develop America's Airmen Today ... for Tomorrow

Observing Independent Component Hiding Develop America's Airmen Today ... for Tomorrow

		Experiment Type (gate replacement size)									
		Standard(3)	Redundant(3)	Standard(4)*	Redundant(4)						
	20	44.74 %	42.50	25.00	55.93						
Iterations	50	58.90	68.49	21.14	55.74						
	100	60.80	78.74	25.33	62.88						
	500	75.80	80.18	26.35	75.62						
	1000	77.41	84.22	31.56	73.46						

	Variant (Obfuscated)	Reduced (Avg)	Reduced (Best)	Reduced (Worst)
Gates	1096	173 (84.22%)	158 (85.58%)	185 (83.12%)
Levels	265	40 (84.91%)	35 (86.79%)	41 (84.53%)

	Obfuscated	Reduced (Avg)	Reduced (Best)	Reduced (Worst)
Gates	2133	1483 (30.47%)	1474 (30.90%)	1495 (29.91%)
Levels	614	426 (30.62%)	425 (30.78%)	428 (30.29%)

	c4	32-c4	199	c4	32-c8	80	ISC	AS M	erge	Bu	uffer-1	.00	B	uffer-5	00
Variant Algorithm	0	s	С	0	s	С	0	S	С	0	S	С	0	S	с
Pattern Based	Ξ.	85%	21-29%	-	63%	22%	×	16- 18%	9%	-	90%	28%	-	89%	26%
Size/Levels		89%	24-36%	-	72%	24%	H	70%	23%		93%	29%	E	92%	28%
Independent Components (pattern-based reduction)	2	2	1	2	2	1	8	1	1	100	59	15	500	253	109
Logic Cells (Quartus II)	133	155	165	173	184	185	1600	1685	nn	0	0	0	хх	хх	хх
Independent	2	2	2	2	2	2	nn	nn	nn	100	100	100	XX	ХХ	хх
Components (as realized by Quartus II)						0- S-	origii Simpl	hal cir e C ·	rcuit · Comp	blex	nn xx	– not 1 – too	tested	sed on	I/O

2

- Is perfect or near topology recovery useful (therefore, is topology *hiding* useful)?
 - In some cases, yes
 - Foundation for other properties (signal / component hiding)
 - · For certain attacks, it is all that is required
- Accomplishing topology hiding
 - Change basis type (normalizing distributions, removing all original)
 - Guarantee every gate is replaced at least once
 - Multiple / overlapping replacement = diffusion **Topology**:

Gate fan-in

Gate fan-out

Experiment 1: Measuring "Replacement" Basis Change

Develop America's Airmen Today ... for Tomorrow

c432	120 gates (4 ANDs + 79 NANDs + 19 NORs + 18 XORs + 40 inverters)
Decomposed	230 gates (60 ANDs + 151 NANDs + 19 NORs + 40 inverters)
Decomposed NOR	843 gates (843 NORs)

Experiment 1a: Measuring "Replacement" Basis Change

Develop America's Airmen Today ... for Tomorrow

$\Omega = \{NOR\} \rightarrow \Omega = \{AND, NAND, OR, XOR, NXOR\}$

Experiment 1b: Measuring "Replacement" Basis Change

Develop America's Airmen Today ... for Tomorrow

$\Omega = \{NAND\} \rightarrow \Omega = \{AND, NOR, OR, XOR, NXOR\}$

Experiment 2: Measuring "Replacement" Uniform Basis Distribution

ISCAS-85 c1355

Iterative Random Selection Algorithm:

Selection Strategy:

- 5% 1) Single Gate: Random
- 75% 2) Two Gate: Random
- 5% 3) Two Gate: Largest Level
- 5% 4) Two Gate: Output Level
- 5% 5) Two Gate: Random Level
- 5% 6) Two Gate: Fixed Level

Replacement Strategy: Random 6-GATE Basis

C1355	506 gates (56 ANDs + 416 NANDs + 2 ORs + 32 buffers + 40 inverters)
Decomposed	550 gates (96 ANDs + 416 NANDs + 6 ORs + 32 buffers + 40 inverters)
Decomposed NAND	730 gates (730 NANDs)

"Single 4000 Iteration Experiment"

"Multiple 4000 Iteration Experiments"

"Multiple 4000 Iteration Experiments"

Experiment 3: Measuring "Replacement" Smart Random Selection

Develop America's Airmen Today ... for Tomorrow

ISCAS-85 c432

Iterative Smart Random 2-Gate Selection Algorithm:

Selection Strategy: Smart Two Gate Random Replacement Strategy: Random Equivalent

Things We've Learned Along the Way Develop America's Airmen Today ... for Tomorrow

- What algorithmic factors influence hiding properties the most?
 - Iteration number
 - Selection size
 - Replacement circuit generation (redundant vs. non-redundant)
- Ongoing work in:
 - Increasing selection size
 - Determinist generation
 - Integrated logic reduction
 - Formal models: term rewriting systems, abstract interpretation, graph partitioning

Experiment 1a: Measuring

% of ORIGINAL GATES

ISCAS-85 c1355

Intellectual and Leadership Center of the Air Forcent ntegrity - Service - Excellence

"Single 4000 Iteration Experiment"

Experiment 2: Measuring "Replacement"

Develop America's Airmen Today ... for Tomorrow

$\Omega = \{NAND\} \rightarrow \Omega = \{AND, NAND, OR, NOR, XOR, NXOR\}$

"Multiple 4000 Iteration Experiments"