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ABSTRACT 

A current means to protect intellectual property embedded in both 

circuits and software involves creating a functionally equivalent 

variant with subjective qualities related to difficulty of reverse 

engineering.   In this paper, we consider the problem of protection 

in a smaller, generalized class of programs based on Boolean 

logic primitives.  We consider Boolean logic reduction as one 

means to quantify hardness of undoing structural transformations 

designed to impede reverse engineering.  We detail our 

experiences in using both commercial synthesis tools and organic 

red-team tools that simplify transformations using known basic 

logic patterns.  Using simple component recovery on candidate 

circuits, we show how specific variation methods impact 

adversarial analysis and posit relationships between specific 

transformations and corresponding difficulty of reversal.  

Categories and Subject Descriptors 

K.6.5 [Management of Computing and Information Systems]: 

Security and Protection – invasive software, physical security, 

hacking. 

General Terms 

Security, Theory, Experimentation, Measurement, Design. 

Keywords 

Hardware security, intellectual property protection, reverse 

engineering, circuit obfuscation, anti-tamper applications 

1. INTRODUCTION 
Measuring the difficulty of reverse engineering or precisely 

defining (any) concrete program characteristic hidden by an 

obfuscating transformation remains a hard problem for 

researchers [3,10].  On one hand, creators of intellectual property 

would like to delay, frustrate, or completely prevent recovery of 

their original design components when adversaries perform 

analysis on realized versions of their programs (e.g., physical 

ASIC chips or executable machine code).  On the other hand, 

forensics experts would like some notional measure of hardness 

or an upper bound on time when considering the difficulty of 

reverse engineering malicious viruses.  In either case, researchers 

and practitioners both would prefer objective measures of 

hardness or mathematically definable means of hiding over 

subjective assessments that rely on skill or familiarity of a reverse 

engineer.  

From a theoretical perspective, no general transformation 

algorithm can fully hide all information in a circuit variant when 

compared to only the information that can be obtained by just 

running input/output pairs of the original circuit [1, 2].  The 

notion of a virtual black box that approaches perfectly secure 

hardware protection which shields all internal analysis of a circuit 

structure remains impossible to produce. However, there remains 

the question of whether any form of variation provides any useful 

form of protection.   

We consider in this paper the context of white-box polymorphic 

structural variation and the degree in which we can measure, 

characterize, and compare effectiveness of these kinds of 

transformations.  In particular, we consider applications where 

white-box polymorphism may prove useful.  By considering 

straight-line programs based on simple logic grammars (AND, 

OR, NOT, and their basic derivatives), we focus more precisely on 

what actually defines obfuscation using a polymorphic circuit 

generator that creates functionally equivalent versions of circuits.  

We also report on the effectiveness of component-hiding as a by-

product of random transformations used by the generator and 

interpret their effectiveness by using pattern matching logic 

reduction heuristics compared to a standard commercial logic 

synthesis tool.  

To organize the paper, we first discuss in Section 2 the 

relationships between circuit structural variation and protection 

properties.  Section 3 provides a description of pattern-matching 

heuristics which reduce circuit variants and our results with using 

these techniques on small merged circuits.  Section 4 gives our 

results with analyzing several worst-case circuits using simple 

pass/fail tests from our custom logic minimization algorithm and 

a commercial synthesis tool.  

2. CIRCUIT VARIATION / PROTECTION 
In general, obfuscation seeks to find suitable variants of an 

original program or circuit that accomplish the same function as 

the original. Practitioners typically define suitability of the variant 

by whether or not the variant demonstrates some security property 

of interest. In most cases, we link the security property to driving 

up the cost of reverse engineering or demonstrating that heuristic 

recovery of certain program information is equivalent to the work 
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of solving a known hard problem [3].  We seek to identify the 

point at which a given variant may be considered "useful" for a 

practical obfuscation purpose.    

2.1 Experimental Language 
For our purposes, we consider the language of logic circuits 

which consist of imperative Boolean functional statements. 

Combinatorial circuits are by definition finite, acyclic, and 

represented by directed acyclic graphs (DAGs). Because 

combinational logic has no loops, we can express the black-box 

behavior of a circuit readily by enumeration of all inputs, 

subsequent evaluation and propagation of signals on all 

intermediate gates, and recording of the corresponding output. We 

characterize black-box circuit behavior as a Boolean function, 

f:{0,1}n→{0,1}m, where n is the input size (or input length) and m 

is the output size (or output length) in bits. We use a traditional 

BENCH grammar to define our experimental circuits [4,7]. Based 

on this grammar, we characterize a circuit in terms of four parts: 

number of inputs, number of outputs, intermediate gate size, and 

the circuit’s basis set Ω  {AND, OR, XOR, NAND, NOR, 

XNOR}. A circuit over Ω is a DAG having either nodes mapping 

to functions in Ω (referred to as gates) or having nodes with in-

degree 0 being termed inputs. We also distinguish one (or more) 

intermediate nodes as outputs. 

2.2 Preserving vs. Changing Semantics 
Given a circuit, we define two major categories of 

transformations: semantic preserving and semantic changing.  We 

consider all structural or syntactic changes (i.e., renumbering gate 

IDs) to a circuit as being a white-box change. Obfuscation, by its 

classic theoretical definition, considers only changes that preserve 

or keep the original function of a circuit (semantic preserving) 

[1,2]. In [5], the authors describe the value of white-box 

transforms where the function is changed, but the output of the 

function for such constructions must be recovered or refined.  For 

recovery, the output of the circuit variant requires decryption 

similar to normal data ciphers that use keys.  For refinement, the 

output of the circuit is hidden in plain sight, but intermixed with 

real circuit output.   

Figure 1 illustrates the theoretical function for all semantic 

preserving obfuscation algorithms; all such algorithms select 

equivalent circuits from a given functional family set. For 

example, given a circuit family set denoted by X-Y-S-Ω, where X is 

input length, Y is output length, S is intermediate gate size, and Ω 

is basis, we let C represent a subset of this family containing all 

circuits that compute the same function as circuit C. Standard 

semantic-preserving obfuscation algorithms take circuit C and 

return a variant C'A from the subset C, such that O(C) = C'A.  The 

characterization of the algorithm O and the distribution of circuits 

it produces remains an open problem, but the random program 

model of [5] and the best possible obfuscation definition of [1] 

both suggest that the strongest algorithm is one which returns 

candidates from the set C on an equiprobable or randomly 

selected basis.  If the environment exists where the functionality 

of the circuit may be changed (i.e., the context in which a circuit 

is used may be adapted), then the possibility exists for 

transformations that change the black-box behavior of a circuit in 

predetermined ways.  Figure 1 illustrates another form of 

obfuscating algorithm which takes circuit C and returns circuit C'B 

such that O(C) = C'B, but C'B  CB, which is another (different) 

functional family subset of  X-Y-S-Ω.   

 

Figure 1. White-box transformations that preserve and  

change black-box semantics. 

As negative and positive theoretic results indicate, changing I/O 

behavior may be the only hope of proving anything concrete 

about obfuscation. We motivate our interest in white-box 

semantic preserving changes from 1) our desire to characterize 

fitness of circuits within the set CB so that we might evaluate 

whether black-box transformations are seamlessly integrated into 

the structure of a circuit variant such as C'B, and 2) our desire to 

characterize some positive benefit of providing a circuit variant 

C'A (versus the original) when the environment is not conducive 

to black-box changes to the original circuit.   In this paper, we 

focus on the latter issue and discuss a practical model for 

measuring the effect of white-box changes to circuit properties of 

interest. 

2.3 Variation Methodology 
For this study, we use a polymorphic circuit generator that 

employs iterative sequences of small sub-circuit selections and 

replacement. Each individual selection and replacement 

represents a variation on a small scale: the generator replaces each 

sub-circuit selected with a functionally equivalent replacement 

sub-circuit. We consider specifically how to characterize and 

measure whether aspects of circuit obfuscation (a hiding property 

of interest) manifests as an artifact of the variation process. Our 

experimental setup analyzes the nature of the structural and 

logical changes produced by our variation algorithm.  Based on 

the logic and component properties of the selection and 

replacement operations themselves, we characterize specific 

trends that occur within a circuit that undergoes transformation.  

What percentage of the transformations introduced via a sub-

circuit selection and replacement algorithm can be undone via 

optimization or logic minimization? If we could answer this 

question, we may have better insight into measuring the degree of 

actual obfuscation taking place. In this particular paper, we look 

at the effect of sub-circuit transformations themselves and 

formulate an approach for answering the measurability question, 

which we now detail in the remainder of the paper. 

Figure 2 provides a summary view of the variation algorithm 

under our study: the algorithm takes a version of a circuit, 

performs some selection strategy that chooses gates (constituting 

a sub-circuit Csub), replaces that sub-circuit with an equivalent 

version (Crep), and then repeats the process.  We define such an 

obfuscation experiment as a 5-tuple: (C,n, , , ) where C is an 

original circuit, n is the number of iterations (sequence of 



selection/replacement),  is a set of selection algorithms with 

cardinality n where si   indicates the selection algorithm 

performed during iteration i,   is a set of selection algorithms 

with cardinality n where ri   indicates the replacement 

algorithm performed during iteration i, and  is a set of gates 

which are given selection priority during the incremental 

execution of the experiment.   

 

Figure 2. Polymorphic circuit generation via select/replace. 

Experiments using this generational approach essentially create a 

random walk from a starting C to some final circuit C' within a 

function family C, as seen in Figure 1.  There exists four 

different decisions that can be made for each selection and 

replacement which define how an experimental walk progresses. 

These decisions define the selection set  and replacement set  

for a given experiment and are described as follows: 

 Random selection: Select a sub-circuit Csub  C based on a purely 

random basis. 

 Random replacement: Select a replacement circuit Crep   Crep  on a 

purely random basis.  Here, Crep  represents the set of all functionally 

equivalent replacements for Crep. 

 Smart selection: Only select sub-circuits Csub which have a particular 

property or select sub-circuits based on partially random/partially 

deterministic basis.  

 Smart replacement: Similar to smart selection, only select replacement 

circuits Crep from a library which have a particular property. In this 

case, the replacement may be generated or deterministically chosen 

based on specific properties of the selection 

2.4 Protective Properties 
The goals of a reverse engineer operating with malicious intent 

vary greatly. In terms of copying or reversing intellectual 

property for the purpose of adaptation, resell, and reuse, the 

essential goal of reverse engineering centers on understanding the 

design intent of the original circuit. In many cases, the same 

reverse engineering goals for a circuit matches with those of 

generalized software. Many practitioners define reverse 

engineering as analyzing a system to identify its partitions and 

their relationships with each other–for the explicit purpose of 

creating an identical and more easily understandable version at a 

higher level of abstraction [6]. 

We can describe the levels of digital circuit abstraction in the 

follow manner, based on increasing level of detail: 1) 

architectural (behavioral), 2) register transfer language (RTL), 3) 

gate level, 4) transistor level, and 5) physical layout.  The 

BENCH grammar essentially represents a gate level view of a 

circuit description.  In our experimental framework, we examine 

gate-level variants with identical functionality to an original gate-

level circuit description. We define the goals of a reverse engineer 

along the lines of abstraction and consider the following 

protective categories: 

1) Topology Recovery: reproducing the original gate level structure of 

the circuit 

2) Signal Recovery: reproducing some or all of the internal signal 

transitions of intermediate gates within the original circuit (the resulting 

truth table columns that result when input signals are propagated 

through a circuit structure to produce output signals) 

3) Component Recovery: reproducing the architectural or component 

level relationships of the original circuit (this is in essence the well-

studied problem of module identification [8, 11]).  In [11], for example, 

module identification consists of two parts: first, enumerating potential 

sub-circuits, and second, matching known component functions to those 

sub-circuits. We refer to this entire process of successful enumeration 

and matching as component identification or component recovery.  

4) Control Recovery: reproducing some or all of the critical signals 

that act as control functions of the original circuit. 

5) Functional Recovery: identifying the function of the original 

circuit, either by reduced logic synthesis or canonical truth table 

derivation. 

In [7], Hansen et al. list similar reverse engineering techniques 

and goals based on deriving the following: (known/standard) 

library modules or program components, repeated modules, 

expected global structures, computed functions, control functions, 

bus structures, and common names.   The underlying goal of such 

analysis assumes that logic gates grouped into higher level 

modules makes reverse engineering easier. Of interest, we note 

that Hansen's definition of black box relates to circuit 

understanding on a large scale: when all other derivation methods 

fail, we must consider a circuit (or sub-circuit) a black box if the 

function is unknown or if the circuit consists of truly random 

logic.   

We note that size alone of the variant may or may not have any 

bearing on the ability of any adversary to accomplish goals 

related to these protective categories.  We may observe that, in 

general, larger intermediate gate size may result in longer analysis 

times or may consume larger resources (memory and storage), but 

no definitive link exists between protection and size per se. Our 

interest concerns whether definable properties of protection 

emerge at certain sizes or whether they emerge based on the 

method by which we create a circuit variant using the 

experimental choices described in Section 2.3.  

2.5 Component Recovery 
Since component recovery plays a major role in reverse 

engineering study and research, we focus on this adversarial goal 

as it relates to analyzing circuit variants. By narrowing our focus, 

we setup a test environment that makes failure (to hide 

components) easy to identify.  Even though measuring absolute 

success requires further work, we report here the results of 

experimental studies along these partial lines.   

Given a circuit C, its gate set G, its input set I, and an integer k > 

1, where k is the number of components, a set M of components 

{c1,…, ck} partitions G and I into k disjoint sets of inputs and/or 

gates.  Figure 3 illustrates the four base cases by which a 

component might partition a circuit in relationship to other 

components or gates. Consider a circuit whose component set 

consists of four disjoint gate sets, M = {A,B,C,D}. Component A 

receives input from the circuit boundary and produces output 

received by another component; component B receives input from 



a component and produces output received by another 

component; component C receives input from another component 

and produces output at the circuit boundary; and component D 

receives input from the circuit boundary and produces output at 

the circuit boundary.   

In terms of component hiding that occurs as an artifact of white-

box structural variation, component D in Figure 3 represents at 

least one instance of a "Kobayashi maru1" or no-win scenario for 

an obfuscating algorithm.  Because semantic preserving 

algorithms produce variants that must maintain the function of the 

original circuit, gates within component D have the greatest 

probability of recovery when compared to scenarios A, B, and C.  

This is because no function preserving obfuscator can alter the 

I/O relationships of component D, thereby giving analysis 

algorithms an advantage to distinguish gates within D from the 

rest of the circuit. It should also follow intuitively that 

components that fit the pattern of component B have a greater 

chance of hiding because they are fully contained within the 

circuit boundary. 

 

Figure 3. Component configuration base cases. 

We can think of this example also from a gate level view.  

Consider a five gate sub-circuit with 9 inputs, 4 outputs, and five 

intermediate gates as in Figure 4. In this example, the logical 

representation of the circuit in its most reduced form 

(accomplished via Espresso heuristic minimization) shows that 

output F0 is driven by only inputs A and B.  Likewise outputs F1, 

F2, and F3 have clear independence of relationships between their 

inputs terms and the output terms of the circuit.  In other words, 

input A drives only output F0 and no other.  This represents the 

component D scenario of Figure 3, if we consider gate 1 to be the 

component.  

 

Figure 4. Gate-level component example. 

We define the problem of component hiding in a no-win scenario 

(one where the component touches both I/O boundaries of the 

circuit) as being the identification of the independent relationships 

that exist between input and output terms.  If our goal is to 

                                                                 

1 http://en.wikipedia.org/wiki/Kobayashi_Maru: A test in the fictional Star Trek movie universe for 

Star Fleet cadets where the computer is allowed to cheat so that it always wins 

obscure or hide the fact that 4 original components existed in the 

circuit of Figure 4, then our job is futile if all we do is change the 

white-box structure of the component internally.  This is because 

any 9-input/4-output circuit is within the realm of canonical 

minimization, regardless of how many gates comprise its internal 

structure.  

This also illustrates clearly the impossibility of obfuscation in 

certain cases–namely, those cases where logic analysis or truth 

table analysis would reveal the property being hidden or 

obscured.  In the case of Figure 4, logic analysis of any gate size 

variant (even one with say 10,000,000,000,000 gates) would 

clearly reveal the component relationships between F0/A/B, 

F1/C/D, F2/E/F, and F3/G/H/I because full truth table 

enumeration remains tractable. Logically speaking, we can also 

consider the goal of component hiding (for a worst case scenario 

such as this) as the ability to produce a variant where outputs of 

one component are driven or have dependency on inputs not part 

of its original component structure.  We refer to this property as 

term interleaving, induced redundancy, or structural overlapping.   

If we take output F0 of Figure 4 as an example, we can perform 

Boolean operations to accomplish interleaving in the following 

manner: F0 = B'(C+C')+A'(H+H') = B'C + B'C' + A'H + A'H'.  

This version defines output F0 with some redundant terms (from 

inputs C and H). Of course given the variant that contains F0 = 

B'C + B'C' + A'H + A'H' structurally, it is easy to reduce the logic 

of the terms and remove the overlap, just based on truth table 

synthesis alone.   

We are therefore motivated by instances where an adversary does 

not have the ability to synthesize such components based on truth 

table logic or instances where the adversary must rely (only) on 

heuristic minimization techniques. We can achieve such scenarios 

when the input/output size combined with the internal gate size of 

the circuit makes such logic analysis and reduction intractable in 

the average case. In other words, the only guarantee that an 

adversary recovers components when they are originally 

configured in such "no-win" scenarios (D in Figure 3) is when the 

circuit is conducive to perfect minimization to begin with (i.e., the 

semantics of the truth table would clearly reveal component 

independence or boundaries). Heuristics (such as ESPRESSO) 

may be able to reduce a circuit, but run the risk of not revealing 

independence of input/output terms that were originally 

independent.  Our study centers on analyzing the effect of logic 

minimization in cases where full circuit synthesis is not possible 

or remains intractable in the canonical case. If abstract this now to 

the circuit level, we can derive a class of circuits that define hard 

cases for component hiding.  Such circuits are created by merging 

or composing multiple independent circuits together into one 

common circuit, where only the input/output boundary of the 

circuit is shared.  

Figure 5 illustrates such a circuit C that has component set M = 

{c1,c2} and each component matches the worst case component 

scenario D of Figure 3.   C' illustrates a variant of circuit C where 

apparent merging of components has occurred via some form of 

induced logical redundancy. If circuit C were of a form that 

prevents canonical truth table minimization and synthesis (e.g., 

input size > 60), we reduce an adversary to heuristic logic 

minimization or white-box topology analysis as the means to 

perform component recovery.  This adversarial limitation defines 

the context and goals of our study, which we expound next. 



3. REMOVING REDUNDANT LOGIC 
Figure 6 illustrates functionally equivalent variants of a single 

circuit. We will use these variants to discuss the notion of logic 

based pattern matching and circuit reduction.  The circuit in 

Figure 6 (seen in graphic representation as a and e) is a 15 input, 

6 output circuit that contains three merged, independent 

components (each with 5 inputs and 2 outputs respectively).  

Figure 6 also illustrates three semantically equivalent circuit 

variants (b, c, and d) of a produced using the variation process 

described in Section 2.3.  Variant b illustrates that some 

transformation processes will keep the independence of the 

original components, whereas variants c and d represent the 

outcome of experiments where apparent merging has occurred.   

 

Figure 5. Merged independent circuits: which original 

component (c1 or c2) does any gate gx belong? 

Circuits e-h in Figure 6 represent the outcome of applying our 

pattern-based logic reduction techniques to a particular variant. 

Circuit e is the reduced form a, which is identical to a and cannot 

be reduced any further. Circuit f represents the reduced form of b, 

which still reveals the original component properties of a.  Circuit 

g represents a reduced form of circuit c, which shows the apparent 

merging reduces to a form where component properties of circuit 

a are revealed.  Circuit h represents a reduced form of circuit d.  

Circuit h represents the interesting case for our consideration: on 

heuristic minimization, the apparent merging of the three circuits 

remains inseparable.  

           

            (a)                 (b)                (c)                 (d) 

    

       (e)                 (f)                 (g)                 (h) 

Figure 6. Variants of original multi-component circuit. 

These circuits illustrate a rudimentary visual feature that is useful 

for considering the effects of both circuit variation and circuit 

reduction. When we examine the graphs of circuit variants, they 

demonstrate one of two properties in terms of their graph: 1) 

either the variant circuit graph contains multiple (but larger) sub-

graphs, or 2) the variant circuit graph contains a single graph with 

merged nodes.  As a very simple measure, we consider variants 

that do not exhibit a merged graph harder to analyze or reverse 

engineer than variants that do exhibit independent sub-graphs 

(especially if the reverse engineering goal is worst-case 

component recovery).  If our proposed reduction sequences can 

take a variant with a merged single graph and reduce it to a circuit 

with independent sub-graphs, we may also conclude that no 

obfuscation took place (at least in terms of hiding the topology of 

worst-case components).  

How much of this induced redundancy between independent 

components cannot be removed and how do we characterize the 

efficiency of the algorithms that would remove them, assuming no 

truth-table based synthesis could occur at the circuit level? In 

Section 3.1 we briefly discuss the techniques we use to minimize 

the circuit seen in Figure 6 and we give results related to size and 

levels as a measure of success. From a graph-based perspective, 

we can also apply a simple failure test: if component merging 

takes place as a result of our variation process, we may use graph 

analysis to determine whether such merging remains after we 

apply logic reduction. 

3.1 Pattern Identification and Reduction 
Cryptanalysts use knowledge of a cryptosystem under study to 

find weaknesses which might compromise the security of the 

overall encryption scheme. In our case, we assume and also verify 

empirically that a large majority of semantic-preserving sub-

circuit replacements are variations of basic logic laws.  For 

example, the absorption law for logic equivalence states that p  

p (p q). In gate structure form, we can represent the equivalent 

BENCH syntax as [INPUT p; INPUT q; OUTPUT 2; 1=OR(p,q); 

2=AND(p,1)]. Redundant logic pathways such as this are 

common artifacts of iterative selection/replacement algorithms.  

Other classic examples of easily reducible logic structures may be 

seen in white-box circuit structures such as buffers, double 

inverters, constant 0/1 gates, and so forth. In [9], we detail the 

work of Kim in creating a logic-reducer based on these common 

patterns which represent a majority of the variation induced by 

small selection size  strategies (1 or 2 gate selections) in iterative 

experiments. Functional identification also offers another 

possibility for reduction where an algorithm may try to find 

white-box structures that reduce to simple AND, OR, NAND, or 

NOR logic patterns. We use two such functional structures that 

come from diamond-based and V-based topology patterns. For 

brevity, we mention here only the major categories and 

descriptions of reduction rules as follows: 

 Reduce Buffer   Reduce Inverter 

 Reduce Inverter with Successor 

XOR / XNOR  

 Reduce AND/ OR/ NAND/ 

NOR with Inverter Inputs 

 Reduce Constant 0/1 with Inverter 

Inputs:  

 Reduce 2 Gates to 

AND/NAND/OR/NOR 

 Reduce 2 Gates to 

Buffer/NOT/Constant 0/1  

 Reduce 2 XOR/XNOR to 

Buffer/NOT  

 Reduce Gate with Opposite Inputs   Reduce Constant 0/1 

 Reduce V Pattern  Reduce Diamond Pattern  

3.2 Reduction Experiments 
In order to characterize the overall effect of reduction versus the 

different approaches with which to create a circuit variant, we 

examine two different versions of small, independently merged   



3-component circuits (as illustrated in Figure 6).  Figure 7 gives 

an overview of a reduction experiment, starting with a circuit 

variant C. We examine two 15 inputs / 6 output circuits 

(designated C17-C17-C17 and R17'-C17-R17") using 3 different 

experimental settings. For each experiment, we apply a specific 

selection, replacement, and generation approach for replacement 

gates using an increasing number of iterations.  For notation 

purposes, Standard and Redundant options refer to settings for a 

specific experiment [9].  They are used to guide the way that 

replacement circuits are generated.  We use Standard to indicate 

that replacement sub-circuits do not contain redundant gates 

themselves (i.e., buffers, redundant signals, constant ones, or 

constant zeros). Redundant indicates the experiment used 

replacement circuits that could possibly contain redundant signals 

and terms themselves. 

 

Figure 7. Reduction experiment and algorithm description. 

Based on this configuration, our experimental set contained 40 

circuit variants. For each of the 40 variants, we implement the 

reductionExperiment algorithm and apply a random ordering of 

the 12 algorithms, where we call one application of one of the 12 

algorithms a “reduction round,” as seen in Figure 7. Since there 

are 12! permutations of algorithmic ordering, we decided to use 

random ordering and assess which orderings produce best and 

worst case reduction. An experiment consists of one or more 

reduction rounds, applied over and over again, up to some 

MAXROUNDS.  For our experiments we set 10 as the maximum 

number of rounds and note that we never observe further 

reductions past 8 rounds in any circuit variant.    

3.4 Experimental Results  
Our experimental design provides a starting point for objective 

comparison of variation/obfuscation algorithms and circuit 

variants.  We report subset of results here from [9] of our iterative 

experiments based on percent of reduction in size as shown in 

Table 1.  Based on this measure, we conclude that the smaller the 

reduction, the better the resulting obfuscation. Thus, Standard(4) 

produces the better obfuscated variant, based on normalized size.  

Table 2 gives our best-case reduction results and Table 3 gives 

our worst-case reduction results, based on the 40 variants under 

consideration, showing which experimental settings and circuit 

produced the greatest and least average reduction in size and 

number of levels (circuit depth). We conducted further analysis of 

the l000 iteration variants to determine why some of the 

remaining gates were not removed (all additional gates are by 

nature by-products of induced redundancy). In short, the apparent 

affect of overlapping replacements of newly introduced logic 

connections (which by definition are redundant), creates patterns 

which are not covered explicitly by our simple 1- and 2-gate 

patterns. We observe in Table 4, that of the 480 gates remaining 

in the Redundant(4) experimental variant, there are still 83 

manually identifiable inverters and 21 manually identifiable 

constant generators.  However, in the 1458 gates of the variant 

produced with Standard(4) sub-circuits, we identify only 18 

inverters through manual inspection.   

Table 1. Average Reduction in Gate Size (in %) 
 

Table 2. Best Case Reduction Result:  

C17-C17-C17, Redundant (3), 1000 iteration 
 

Table 3. Worst Case Reduction Result:  

R17'-C17-R17", Standard (4), 1000 iteration 



Given our initial set of circuits and options, we summarize our 

findings in terms of algorithmic options in the generation process 

and their apparent effect on our heuristic based reduction.  In 

general, larger gate size replacements (4 vs. 3 gates) affect 

reduction, which corresponds with the idea that larger 

replacement options would produce larger and larger numbers of 

new logic patterns to analyze and categorize.  We also surmise 

(rightly), that circuits which have higher occurrences of redundant 

patterns (those variants produced under the Redundant 

replacement option) would lend themselves to better reduction 

rates when basic logic equivalence patterns are in view.    

Table 4. Remaining Gate Counts 

Finally, iteration count does indeed matter because merging (at 

least as a by-product of random selection and replacement), only 

emerges with larger iteration count, i.e., 1000 is better than 20 

iterations. Lower iteration counts have higher probability of 

pattern detection as well, which corresponds to our intuition that 

small numbers of simple selection/replacements do not provide 

anything useful in terms of hiding or variation.   

3.5 Observable Component Hiding 
All 40 variants in our experiment derive from worst-case 

component hiding circuits that use merging of three originally 

independent sub-circuits.  As Figure 6 illustrates, some variants 

(i.e., Fig. 6-b) produce no apparent merging while other variants 

do (i.e., Fig. 6- c and d).  Of the variants that produce a unified 

circuit graph, our logic reduction technique (in some cases) 

sufficiently removes enough of the redundancies in some cases so 

that three distinct graphs emerge (i.e., Fig. 6-g). Table 5 

summarizes simple graph-based observation of our 40 circuit 

variants, both before (Table 5-Variant columns) and after 

applying reduction (Table 5-Reduced columns), and whether or 

not we observe three distinct graphs (NO) or a single graph (YES).    

Table 5. Report on Graph Variants Merging (YES=merged) 

We consider instances where three distinct graphs are observed as 

outright failures in terms of component hiding. In cases where one 

graph remains, we also observe that iteration and generation 

options (Redundant or Standard) affect whether reduction allows 

identification of the original three circuit graphs.  These results 

confirm our observations based on gate size and level as presented 

in Table 4–in particular, higher reduction rates on logic 

minimization tend to indicate less likelihood that component 

hiding emerges as a by-product of a random variation process. 

4. CASE STUDY EXPERIMENT 
Given these results, we note that all 40 circuits in question would 

all fail circuit level logic synthesis analysis because 15 input, 6 

output circuits are well within the range of commercial tools and 

heuristic minimization algorithms to analyze.  Consistent with our 

discussion in Section 2, truth table analysis would clearly reveal 

the input/output independence of the original three circuits that 

we merge together to produce our starting case circuits.  

Therefore, no white-box structural variation (alone) can hide 

component information for circuits with components that are 

independent of each other. 

Though the results of our logic-based pattern matching 

experiments give some indication of whether one algorithm may 

produce better component hiding as an artifact, we desire to know 

whether component hiding artifacts would be present in more 

realistic, larger scale circuit examples.  For this purpose, we 

create five artificially "worst-case" circuits that are themselves 

merged versions of smaller, independent circuits.  In some cases, 

we utilize existing circuits from the ISCAS-85 benchmark set, and 

in other cases we create our own test cases.  

4.1 Experimental Circuit Set 
For our case study, we develop a set of five circuits with 

distinctive characteristics. All circuits have in common the fact 

that they are composed of independent circuits merged together 

and sharing common circuit I/O boundary, exhibiting our worst-

case scenario in terms of component hiding.  For two circuits, we 

compose the c432, c499, and c880 ISCAS-85 benchmark circuits 

(seen as c432-c499 and c432-c880 in Table 6). The merging of 

c432 and c499, for example, produces a 77-bit input and 39-bit 

output circuit. The "ISCAS Merge" circuit represents a 

composition of 8 independent circuits together, reaching an I/O 

space of 362 bits and 192 outputs. We also consider two hard-case 

scenario circuits that are simply inputs tied to outputs, or in other 

words, circuits with only buffers connecting each input with its 

output. Such a circuit duplicates every input on its output bits.  

We consider a 100-bit buffer circuit (Buffer-100) as well as a 500-

bit version (Buffer-500) for analysis purposes.   

The original versions of each circuit in the case study show 

independent disconnected graphs among their constituent 

components.  They represent larger scale circuit versions which 

may force adversarial analysis tools (such as commercial 

reducers) to rely on other than best-case reduction or logic 

synthesis.  Our interest in the case study analysis remains whether 

pattern-based logic reduction holds promise when compared to 

commercially available tools and whether either form of analysis 

breaks down with larger I/O space circuits.  

4.2 Experiment Setup 
For our synthesis analysis, we use Quartus II , a software tool 

developed by the Altera Corporation  for the design and synthesis 

of circuit designs for FPGAs and other programmable devices. 

Using Quartus II , we were able to compare pattern-based 

reduction with commercial optimization in several ways.  In terms 

of producing variants for analysis, our case study comparison 

only considers a simple or complex version of the generation 

algorithm, as seen in Table 6.  For the simple algorithm approach, 

we use only a 2-gate random selection and 3-gate fully random 

replacement. We run some number of iterations that range from 



3000-10000.  For the complex algorithm approach, we utilize a 

variety of selection algorithms that pick 1, 2, 3, or 4 gates and 

replace them with a random choice, up to 2 to 3 gate sizes larger.  

Since not every selection has a valid replacement for the given 

size requested, we also use goal-based measures to guarantee a 

minimum number of replacements.  Our case study used 

anywhere from 3000-5000 guaranteed replacements in the 

complex approach. 

For minimization and analysis of the variants, we use two 

approaches.  First, we convert circuit variants into an appropriate 

VHDL form and use Quartus II  to analyze them.  Second, we 

perform pattern-based reduction as described in Section 3.  Using 

the synthesis tool, we employ the technology viewer mode to see 

how a circuit NETLIST is synthesized for an FPGA. Such 

analysis provides us insight as to whether the tool associates 

inputs with outputs and whether or not inputs from different 

components drive outputs in other components.  The tool, for 

example, rendered as three independent sub-circuits (based on 

input and output correlation or pin groupings) and mapped to 

specific independent sets of logic units. 

4.3 Case Study Results 
To summarize the results of our study, we present in Table 6 the 

percentage reduction in size and levels, based on the original, of 

our test circuit variants (both simple and complex) based on our 

pattern-matching algorithm.  We also list the graph-based analysis 

view of each original and their variants, based on how many 

distinct, independent components are visible.   

Table 6. Case Study Summary Results 

Table 6 illustrates that, at least for simple-algorithm variants, our 

logic-based pattern matching reduction performs comparably to 

the Quartus II  tool. We note that the ISCAS Merge circuit proved 

the most difficult to analyze for either tool.  In the case of 500-

buffer circuit, the tool did not have the I/O pin capability that 

could handle the circuit, but our analyzer provided modest 

reduction in the simple-algorithm variant.  The number of logic 

cells reported by the tool also represents around 6-8 gates of 

realized circuitry as each one implements a configurable 16-bit 

look up table.  We note in summary that the pattern-based 

reduction meets our expectations considering results indicated by 

circuits under study in Section 3.  Namely, variants produced by 

simple selection algorithms (2 gate selections) reduce at higher 

rates than variants created with more complex pattern capability.  

5. CONCLUSIONS 
In this paper, we report experimental results of using logic-based 

pattern matching algorithms as a red-team analysis tool for circuit 

variants intended for obfuscating or protecting intellectual 

property.  We show the efficacy of pattern-based matching 

algorithms and their effect on circuit variants, providing a 

concrete approach to compare and understand different generation 

algorithms. Much future work remains to refine our logic-based 

pattern matching algorithm to be more competitive with currently 

available commercial synthesis tools.  We note, in conclusion, 

that none of our experimental options for producing the circuit 

variants were deterministically geared to produce component 

hiding.  We only consider random variation with some small 

degree of determinism in how the experimental generation 

proceeds.  We demonstrate, at least empirically, that hiding 

properties such as component hiding, may be achievable as 

attributes of variation processes that exploit maximum 

randomness in the choices of the circuit generator. Future work 

will focus on additional aspects of hiding, especially when 

deterministic means are integrated into the generation process. 
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