
Using Logic-Based Reduction

For Adversarial Component Recovery
J. Todd McDonald, Eric D. Trias, Yong C. Kim, and Michael R. Grimaila

Air Force Institute of Technology

Wright-Patterson Air Force Base, Ohio 45433

001-937-255-3636

[jmcdonal, etrias, ykim, mgrimail]@afit.edu

ABSTRACT

A current means to protect intellectual property embedded in both

circuits and software involves creating a functionally equivalent

variant with subjective qualities related to difficulty of reverse

engineering. In this paper, we consider the problem of protection

in a smaller, generalized class of programs based on Boolean

logic primitives. We consider Boolean logic reduction as one

means to quantify hardness of undoing structural transformations

designed to impede reverse engineering. We detail our

experiences in using both commercial synthesis tools and organic

red-team tools that simplify transformations using known basic

logic patterns. Using simple component recovery on candidate

circuits, we show how specific variation methods impact

adversarial analysis and posit relationships between specific

transformations and corresponding difficulty of reversal.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:

Security and Protection – invasive software, physical security,

hacking.

General Terms

Security, Theory, Experimentation, Measurement, Design.

Keywords

Hardware security, intellectual property protection, reverse

engineering, circuit obfuscation, anti-tamper applications

1. INTRODUCTION
Measuring the difficulty of reverse engineering or precisely

defining (any) concrete program characteristic hidden by an

obfuscating transformation remains a hard problem for

researchers [3,10]. On one hand, creators of intellectual property

would like to delay, frustrate, or completely prevent recovery of

their original design components when adversaries perform

analysis on realized versions of their programs (e.g., physical

ASIC chips or executable machine code). On the other hand,

forensics experts would like some notional measure of hardness

or an upper bound on time when considering the difficulty of

reverse engineering malicious viruses. In either case, researchers

and practitioners both would prefer objective measures of

hardness or mathematically definable means of hiding over

subjective assessments that rely on skill or familiarity of a reverse

engineer.

From a theoretical perspective, no general transformation

algorithm can fully hide all information in a circuit variant when

compared to only the information that can be obtained by just

running input/output pairs of the original circuit [1, 2]. The

notion of a virtual black box that approaches perfectly secure

hardware protection which shields all internal analysis of a circuit

structure remains impossible to produce. However, there remains

the question of whether any form of variation provides any useful

form of protection.

We consider in this paper the context of white-box polymorphic

structural variation and the degree in which we can measure,

characterize, and compare effectiveness of these kinds of

transformations. In particular, we consider applications where

white-box polymorphism may prove useful. By considering

straight-line programs based on simple logic grammars (AND,

OR, NOT, and their basic derivatives), we focus more precisely on

what actually defines obfuscation using a polymorphic circuit

generator that creates functionally equivalent versions of circuits.

We also report on the effectiveness of component-hiding as a by-

product of random transformations used by the generator and

interpret their effectiveness by using pattern matching logic

reduction heuristics compared to a standard commercial logic

synthesis tool.

To organize the paper, we first discuss in Section 2 the

relationships between circuit structural variation and protection

properties. Section 3 provides a description of pattern-matching

heuristics which reduce circuit variants and our results with using

these techniques on small merged circuits. Section 4 gives our

results with analyzing several worst-case circuits using simple

pass/fail tests from our custom logic minimization algorithm and

a commercial synthesis tool.

2. CIRCUIT VARIATION / PROTECTION
In general, obfuscation seeks to find suitable variants of an

original program or circuit that accomplish the same function as

the original. Practitioners typically define suitability of the variant

by whether or not the variant demonstrates some security property

of interest. In most cases, we link the security property to driving

up the cost of reverse engineering or demonstrating that heuristic

recovery of certain program information is equivalent to the work

This paper is authored by employees of the U.S. Government and is in

the public domain.

SAC’10, March 22-26, 2010, Sierre, Switzerland.

Copyright 2010 ACM 978-1-60558-638-0/10/03…$10.00.

of solving a known hard problem [3]. We seek to identify the

point at which a given variant may be considered "useful" for a

practical obfuscation purpose.

2.1 Experimental Language
For our purposes, we consider the language of logic circuits

which consist of imperative Boolean functional statements.

Combinatorial circuits are by definition finite, acyclic, and

represented by directed acyclic graphs (DAGs). Because

combinational logic has no loops, we can express the black-box

behavior of a circuit readily by enumeration of all inputs,

subsequent evaluation and propagation of signals on all

intermediate gates, and recording of the corresponding output. We

characterize black-box circuit behavior as a Boolean function,

f:{0,1}n→{0,1}m, where n is the input size (or input length) and m

is the output size (or output length) in bits. We use a traditional

BENCH grammar to define our experimental circuits [4,7]. Based

on this grammar, we characterize a circuit in terms of four parts:

number of inputs, number of outputs, intermediate gate size, and

the circuit’s basis set Ω {AND, OR, XOR, NAND, NOR,

XNOR}. A circuit over Ω is a DAG having either nodes mapping

to functions in Ω (referred to as gates) or having nodes with in-

degree 0 being termed inputs. We also distinguish one (or more)

intermediate nodes as outputs.

2.2 Preserving vs. Changing Semantics
Given a circuit, we define two major categories of

transformations: semantic preserving and semantic changing. We

consider all structural or syntactic changes (i.e., renumbering gate

IDs) to a circuit as being a white-box change. Obfuscation, by its

classic theoretical definition, considers only changes that preserve

or keep the original function of a circuit (semantic preserving)

[1,2]. In [5], the authors describe the value of white-box

transforms where the function is changed, but the output of the

function for such constructions must be recovered or refined. For

recovery, the output of the circuit variant requires decryption

similar to normal data ciphers that use keys. For refinement, the

output of the circuit is hidden in plain sight, but intermixed with

real circuit output.

Figure 1 illustrates the theoretical function for all semantic

preserving obfuscation algorithms; all such algorithms select

equivalent circuits from a given functional family set. For

example, given a circuit family set denoted by X-Y-S-Ω, where X is

input length, Y is output length, S is intermediate gate size, and Ω

is basis, we let C represent a subset of this family containing all

circuits that compute the same function as circuit C. Standard

semantic-preserving obfuscation algorithms take circuit C and

return a variant C'A from the subset C, such that O(C) = C'A. The

characterization of the algorithm O and the distribution of circuits

it produces remains an open problem, but the random program

model of [5] and the best possible obfuscation definition of [1]

both suggest that the strongest algorithm is one which returns

candidates from the set C on an equiprobable or randomly

selected basis. If the environment exists where the functionality

of the circuit may be changed (i.e., the context in which a circuit

is used may be adapted), then the possibility exists for

transformations that change the black-box behavior of a circuit in

predetermined ways. Figure 1 illustrates another form of

obfuscating algorithm which takes circuit C and returns circuit C'B

such that O(C) = C'B, but C'B CB, which is another (different)

functional family subset of X-Y-S-Ω.

Figure 1. White-box transformations that preserve and

change black-box semantics.

As negative and positive theoretic results indicate, changing I/O

behavior may be the only hope of proving anything concrete

about obfuscation. We motivate our interest in white-box

semantic preserving changes from 1) our desire to characterize

fitness of circuits within the set CB so that we might evaluate

whether black-box transformations are seamlessly integrated into

the structure of a circuit variant such as C'B, and 2) our desire to

characterize some positive benefit of providing a circuit variant

C'A (versus the original) when the environment is not conducive

to black-box changes to the original circuit. In this paper, we

focus on the latter issue and discuss a practical model for

measuring the effect of white-box changes to circuit properties of

interest.

2.3 Variation Methodology
For this study, we use a polymorphic circuit generator that

employs iterative sequences of small sub-circuit selections and

replacement. Each individual selection and replacement

represents a variation on a small scale: the generator replaces each

sub-circuit selected with a functionally equivalent replacement

sub-circuit. We consider specifically how to characterize and

measure whether aspects of circuit obfuscation (a hiding property

of interest) manifests as an artifact of the variation process. Our

experimental setup analyzes the nature of the structural and

logical changes produced by our variation algorithm. Based on

the logic and component properties of the selection and

replacement operations themselves, we characterize specific

trends that occur within a circuit that undergoes transformation.

What percentage of the transformations introduced via a sub-

circuit selection and replacement algorithm can be undone via

optimization or logic minimization? If we could answer this

question, we may have better insight into measuring the degree of

actual obfuscation taking place. In this particular paper, we look

at the effect of sub-circuit transformations themselves and

formulate an approach for answering the measurability question,

which we now detail in the remainder of the paper.

Figure 2 provides a summary view of the variation algorithm

under our study: the algorithm takes a version of a circuit,

performs some selection strategy that chooses gates (constituting

a sub-circuit Csub), replaces that sub-circuit with an equivalent

version (Crep), and then repeats the process. We define such an

obfuscation experiment as a 5-tuple: (C,n, , ,) where C is an

original circuit, n is the number of iterations (sequence of

selection/replacement), is a set of selection algorithms with

cardinality n where si indicates the selection algorithm

performed during iteration i, is a set of selection algorithms

with cardinality n where ri indicates the replacement

algorithm performed during iteration i, and is a set of gates

which are given selection priority during the incremental

execution of the experiment.

Figure 2. Polymorphic circuit generation via select/replace.

Experiments using this generational approach essentially create a

random walk from a starting C to some final circuit C' within a

function family C, as seen in Figure 1. There exists four

different decisions that can be made for each selection and

replacement which define how an experimental walk progresses.

These decisions define the selection set and replacement set

for a given experiment and are described as follows:

 Random selection: Select a sub-circuit Csub C based on a purely

random basis.

 Random replacement: Select a replacement circuit Crep Crep on a

purely random basis. Here, Crep represents the set of all functionally

equivalent replacements for Crep.

 Smart selection: Only select sub-circuits Csub which have a particular

property or select sub-circuits based on partially random/partially

deterministic basis.

 Smart replacement: Similar to smart selection, only select replacement

circuits Crep from a library which have a particular property. In this

case, the replacement may be generated or deterministically chosen

based on specific properties of the selection

2.4 Protective Properties
The goals of a reverse engineer operating with malicious intent

vary greatly. In terms of copying or reversing intellectual

property for the purpose of adaptation, resell, and reuse, the

essential goal of reverse engineering centers on understanding the

design intent of the original circuit. In many cases, the same

reverse engineering goals for a circuit matches with those of

generalized software. Many practitioners define reverse

engineering as analyzing a system to identify its partitions and

their relationships with each other–for the explicit purpose of

creating an identical and more easily understandable version at a

higher level of abstraction [6].

We can describe the levels of digital circuit abstraction in the

follow manner, based on increasing level of detail: 1)

architectural (behavioral), 2) register transfer language (RTL), 3)

gate level, 4) transistor level, and 5) physical layout. The

BENCH grammar essentially represents a gate level view of a

circuit description. In our experimental framework, we examine

gate-level variants with identical functionality to an original gate-

level circuit description. We define the goals of a reverse engineer

along the lines of abstraction and consider the following

protective categories:

1) Topology Recovery: reproducing the original gate level structure of

the circuit

2) Signal Recovery: reproducing some or all of the internal signal

transitions of intermediate gates within the original circuit (the resulting

truth table columns that result when input signals are propagated

through a circuit structure to produce output signals)

3) Component Recovery: reproducing the architectural or component

level relationships of the original circuit (this is in essence the well-

studied problem of module identification [8, 11]). In [11], for example,

module identification consists of two parts: first, enumerating potential

sub-circuits, and second, matching known component functions to those

sub-circuits. We refer to this entire process of successful enumeration

and matching as component identification or component recovery.

4) Control Recovery: reproducing some or all of the critical signals

that act as control functions of the original circuit.

5) Functional Recovery: identifying the function of the original

circuit, either by reduced logic synthesis or canonical truth table

derivation.

In [7], Hansen et al. list similar reverse engineering techniques

and goals based on deriving the following: (known/standard)

library modules or program components, repeated modules,

expected global structures, computed functions, control functions,

bus structures, and common names. The underlying goal of such

analysis assumes that logic gates grouped into higher level

modules makes reverse engineering easier. Of interest, we note

that Hansen's definition of black box relates to circuit

understanding on a large scale: when all other derivation methods

fail, we must consider a circuit (or sub-circuit) a black box if the

function is unknown or if the circuit consists of truly random

logic.

We note that size alone of the variant may or may not have any

bearing on the ability of any adversary to accomplish goals

related to these protective categories. We may observe that, in

general, larger intermediate gate size may result in longer analysis

times or may consume larger resources (memory and storage), but

no definitive link exists between protection and size per se. Our

interest concerns whether definable properties of protection

emerge at certain sizes or whether they emerge based on the

method by which we create a circuit variant using the

experimental choices described in Section 2.3.

2.5 Component Recovery
Since component recovery plays a major role in reverse

engineering study and research, we focus on this adversarial goal

as it relates to analyzing circuit variants. By narrowing our focus,

we setup a test environment that makes failure (to hide

components) easy to identify. Even though measuring absolute

success requires further work, we report here the results of

experimental studies along these partial lines.

Given a circuit C, its gate set G, its input set I, and an integer k >

1, where k is the number of components, a set M of components

{c1,…, ck} partitions G and I into k disjoint sets of inputs and/or

gates. Figure 3 illustrates the four base cases by which a

component might partition a circuit in relationship to other

components or gates. Consider a circuit whose component set

consists of four disjoint gate sets, M = {A,B,C,D}. Component A

receives input from the circuit boundary and produces output

received by another component; component B receives input from

a component and produces output received by another

component; component C receives input from another component

and produces output at the circuit boundary; and component D

receives input from the circuit boundary and produces output at

the circuit boundary.

In terms of component hiding that occurs as an artifact of white-

box structural variation, component D in Figure 3 represents at

least one instance of a "Kobayashi maru1" or no-win scenario for

an obfuscating algorithm. Because semantic preserving

algorithms produce variants that must maintain the function of the

original circuit, gates within component D have the greatest

probability of recovery when compared to scenarios A, B, and C.

This is because no function preserving obfuscator can alter the

I/O relationships of component D, thereby giving analysis

algorithms an advantage to distinguish gates within D from the

rest of the circuit. It should also follow intuitively that

components that fit the pattern of component B have a greater

chance of hiding because they are fully contained within the

circuit boundary.

Figure 3. Component configuration base cases.

We can think of this example also from a gate level view.

Consider a five gate sub-circuit with 9 inputs, 4 outputs, and five

intermediate gates as in Figure 4. In this example, the logical

representation of the circuit in its most reduced form

(accomplished via Espresso heuristic minimization) shows that

output F0 is driven by only inputs A and B. Likewise outputs F1,

F2, and F3 have clear independence of relationships between their

inputs terms and the output terms of the circuit. In other words,

input A drives only output F0 and no other. This represents the

component D scenario of Figure 3, if we consider gate 1 to be the

component.

Figure 4. Gate-level component example.

We define the problem of component hiding in a no-win scenario

(one where the component touches both I/O boundaries of the

circuit) as being the identification of the independent relationships

that exist between input and output terms. If our goal is to

1 http://en.wikipedia.org/wiki/Kobayashi_Maru: A test in the fictional Star Trek movie universe for

Star Fleet cadets where the computer is allowed to cheat so that it always wins

obscure or hide the fact that 4 original components existed in the

circuit of Figure 4, then our job is futile if all we do is change the

white-box structure of the component internally. This is because

any 9-input/4-output circuit is within the realm of canonical

minimization, regardless of how many gates comprise its internal

structure.

This also illustrates clearly the impossibility of obfuscation in

certain cases–namely, those cases where logic analysis or truth

table analysis would reveal the property being hidden or

obscured. In the case of Figure 4, logic analysis of any gate size

variant (even one with say 10,000,000,000,000 gates) would

clearly reveal the component relationships between F0/A/B,

F1/C/D, F2/E/F, and F3/G/H/I because full truth table

enumeration remains tractable. Logically speaking, we can also

consider the goal of component hiding (for a worst case scenario

such as this) as the ability to produce a variant where outputs of

one component are driven or have dependency on inputs not part

of its original component structure. We refer to this property as

term interleaving, induced redundancy, or structural overlapping.

If we take output F0 of Figure 4 as an example, we can perform

Boolean operations to accomplish interleaving in the following

manner: F0 = B'(C+C')+A'(H+H') = B'C + B'C' + A'H + A'H'.

This version defines output F0 with some redundant terms (from

inputs C and H). Of course given the variant that contains F0 =

B'C + B'C' + A'H + A'H' structurally, it is easy to reduce the logic

of the terms and remove the overlap, just based on truth table

synthesis alone.

We are therefore motivated by instances where an adversary does

not have the ability to synthesize such components based on truth

table logic or instances where the adversary must rely (only) on

heuristic minimization techniques. We can achieve such scenarios

when the input/output size combined with the internal gate size of

the circuit makes such logic analysis and reduction intractable in

the average case. In other words, the only guarantee that an

adversary recovers components when they are originally

configured in such "no-win" scenarios (D in Figure 3) is when the

circuit is conducive to perfect minimization to begin with (i.e., the

semantics of the truth table would clearly reveal component

independence or boundaries). Heuristics (such as ESPRESSO)

may be able to reduce a circuit, but run the risk of not revealing

independence of input/output terms that were originally

independent. Our study centers on analyzing the effect of logic

minimization in cases where full circuit synthesis is not possible

or remains intractable in the canonical case. If abstract this now to

the circuit level, we can derive a class of circuits that define hard

cases for component hiding. Such circuits are created by merging

or composing multiple independent circuits together into one

common circuit, where only the input/output boundary of the

circuit is shared.

Figure 5 illustrates such a circuit C that has component set M =

{c1,c2} and each component matches the worst case component

scenario D of Figure 3. C' illustrates a variant of circuit C where

apparent merging of components has occurred via some form of

induced logical redundancy. If circuit C were of a form that

prevents canonical truth table minimization and synthesis (e.g.,

input size > 60), we reduce an adversary to heuristic logic

minimization or white-box topology analysis as the means to

perform component recovery. This adversarial limitation defines

the context and goals of our study, which we expound next.

3. REMOVING REDUNDANT LOGIC
Figure 6 illustrates functionally equivalent variants of a single

circuit. We will use these variants to discuss the notion of logic

based pattern matching and circuit reduction. The circuit in

Figure 6 (seen in graphic representation as a and e) is a 15 input,

6 output circuit that contains three merged, independent

components (each with 5 inputs and 2 outputs respectively).

Figure 6 also illustrates three semantically equivalent circuit

variants (b, c, and d) of a produced using the variation process

described in Section 2.3. Variant b illustrates that some

transformation processes will keep the independence of the

original components, whereas variants c and d represent the

outcome of experiments where apparent merging has occurred.

Figure 5. Merged independent circuits: which original

component (c1 or c2) does any gate gx belong?

Circuits e-h in Figure 6 represent the outcome of applying our

pattern-based logic reduction techniques to a particular variant.

Circuit e is the reduced form a, which is identical to a and cannot

be reduced any further. Circuit f represents the reduced form of b,

which still reveals the original component properties of a. Circuit

g represents a reduced form of circuit c, which shows the apparent

merging reduces to a form where component properties of circuit

a are revealed. Circuit h represents a reduced form of circuit d.

Circuit h represents the interesting case for our consideration: on

heuristic minimization, the apparent merging of the three circuits

remains inseparable.

 (a) (b) (c) (d)

 (e) (f) (g) (h)

Figure 6. Variants of original multi-component circuit.

These circuits illustrate a rudimentary visual feature that is useful

for considering the effects of both circuit variation and circuit

reduction. When we examine the graphs of circuit variants, they

demonstrate one of two properties in terms of their graph: 1)

either the variant circuit graph contains multiple (but larger) sub-

graphs, or 2) the variant circuit graph contains a single graph with

merged nodes. As a very simple measure, we consider variants

that do not exhibit a merged graph harder to analyze or reverse

engineer than variants that do exhibit independent sub-graphs

(especially if the reverse engineering goal is worst-case

component recovery). If our proposed reduction sequences can

take a variant with a merged single graph and reduce it to a circuit

with independent sub-graphs, we may also conclude that no

obfuscation took place (at least in terms of hiding the topology of

worst-case components).

How much of this induced redundancy between independent

components cannot be removed and how do we characterize the

efficiency of the algorithms that would remove them, assuming no

truth-table based synthesis could occur at the circuit level? In

Section 3.1 we briefly discuss the techniques we use to minimize

the circuit seen in Figure 6 and we give results related to size and

levels as a measure of success. From a graph-based perspective,

we can also apply a simple failure test: if component merging

takes place as a result of our variation process, we may use graph

analysis to determine whether such merging remains after we

apply logic reduction.

3.1 Pattern Identification and Reduction
Cryptanalysts use knowledge of a cryptosystem under study to

find weaknesses which might compromise the security of the

overall encryption scheme. In our case, we assume and also verify

empirically that a large majority of semantic-preserving sub-

circuit replacements are variations of basic logic laws. For

example, the absorption law for logic equivalence states that p

p (p q). In gate structure form, we can represent the equivalent

BENCH syntax as [INPUT p; INPUT q; OUTPUT 2; 1=OR(p,q);

2=AND(p,1)]. Redundant logic pathways such as this are

common artifacts of iterative selection/replacement algorithms.

Other classic examples of easily reducible logic structures may be

seen in white-box circuit structures such as buffers, double

inverters, constant 0/1 gates, and so forth. In [9], we detail the

work of Kim in creating a logic-reducer based on these common

patterns which represent a majority of the variation induced by

small selection size strategies (1 or 2 gate selections) in iterative

experiments. Functional identification also offers another

possibility for reduction where an algorithm may try to find

white-box structures that reduce to simple AND, OR, NAND, or

NOR logic patterns. We use two such functional structures that

come from diamond-based and V-based topology patterns. For

brevity, we mention here only the major categories and

descriptions of reduction rules as follows:

 Reduce Buffer Reduce Inverter

 Reduce Inverter with Successor

XOR / XNOR

 Reduce AND/ OR/ NAND/

NOR with Inverter Inputs

 Reduce Constant 0/1 with Inverter

Inputs:

 Reduce 2 Gates to

AND/NAND/OR/NOR

 Reduce 2 Gates to

Buffer/NOT/Constant 0/1

 Reduce 2 XOR/XNOR to

Buffer/NOT

 Reduce Gate with Opposite Inputs Reduce Constant 0/1

 Reduce V Pattern Reduce Diamond Pattern

3.2 Reduction Experiments
In order to characterize the overall effect of reduction versus the

different approaches with which to create a circuit variant, we

examine two different versions of small, independently merged

3-component circuits (as illustrated in Figure 6). Figure 7 gives

an overview of a reduction experiment, starting with a circuit

variant C. We examine two 15 inputs / 6 output circuits

(designated C17-C17-C17 and R17'-C17-R17") using 3 different

experimental settings. For each experiment, we apply a specific

selection, replacement, and generation approach for replacement

gates using an increasing number of iterations. For notation

purposes, Standard and Redundant options refer to settings for a

specific experiment [9]. They are used to guide the way that

replacement circuits are generated. We use Standard to indicate

that replacement sub-circuits do not contain redundant gates

themselves (i.e., buffers, redundant signals, constant ones, or

constant zeros). Redundant indicates the experiment used

replacement circuits that could possibly contain redundant signals

and terms themselves.

Figure 7. Reduction experiment and algorithm description.

Based on this configuration, our experimental set contained 40

circuit variants. For each of the 40 variants, we implement the

reductionExperiment algorithm and apply a random ordering of

the 12 algorithms, where we call one application of one of the 12

algorithms a “reduction round,” as seen in Figure 7. Since there

are 12! permutations of algorithmic ordering, we decided to use

random ordering and assess which orderings produce best and

worst case reduction. An experiment consists of one or more

reduction rounds, applied over and over again, up to some

MAXROUNDS. For our experiments we set 10 as the maximum

number of rounds and note that we never observe further

reductions past 8 rounds in any circuit variant.

3.4 Experimental Results
Our experimental design provides a starting point for objective

comparison of variation/obfuscation algorithms and circuit

variants. We report subset of results here from [9] of our iterative

experiments based on percent of reduction in size as shown in

Table 1. Based on this measure, we conclude that the smaller the

reduction, the better the resulting obfuscation. Thus, Standard(4)

produces the better obfuscated variant, based on normalized size.

Table 2 gives our best-case reduction results and Table 3 gives

our worst-case reduction results, based on the 40 variants under

consideration, showing which experimental settings and circuit

produced the greatest and least average reduction in size and

number of levels (circuit depth). We conducted further analysis of

the l000 iteration variants to determine why some of the

remaining gates were not removed (all additional gates are by

nature by-products of induced redundancy). In short, the apparent

affect of overlapping replacements of newly introduced logic

connections (which by definition are redundant), creates patterns

which are not covered explicitly by our simple 1- and 2-gate

patterns. We observe in Table 4, that of the 480 gates remaining

in the Redundant(4) experimental variant, there are still 83

manually identifiable inverters and 21 manually identifiable

constant generators. However, in the 1458 gates of the variant

produced with Standard(4) sub-circuits, we identify only 18

inverters through manual inspection.

Table 1. Average Reduction in Gate Size (in %)

Table 2. Best Case Reduction Result:

C17-C17-C17, Redundant (3), 1000 iteration

Table 3. Worst Case Reduction Result:

R17'-C17-R17", Standard (4), 1000 iteration

Given our initial set of circuits and options, we summarize our

findings in terms of algorithmic options in the generation process

and their apparent effect on our heuristic based reduction. In

general, larger gate size replacements (4 vs. 3 gates) affect

reduction, which corresponds with the idea that larger

replacement options would produce larger and larger numbers of

new logic patterns to analyze and categorize. We also surmise

(rightly), that circuits which have higher occurrences of redundant

patterns (those variants produced under the Redundant

replacement option) would lend themselves to better reduction

rates when basic logic equivalence patterns are in view.

Table 4. Remaining Gate Counts

Finally, iteration count does indeed matter because merging (at

least as a by-product of random selection and replacement), only

emerges with larger iteration count, i.e., 1000 is better than 20

iterations. Lower iteration counts have higher probability of

pattern detection as well, which corresponds to our intuition that

small numbers of simple selection/replacements do not provide

anything useful in terms of hiding or variation.

3.5 Observable Component Hiding
All 40 variants in our experiment derive from worst-case

component hiding circuits that use merging of three originally

independent sub-circuits. As Figure 6 illustrates, some variants

(i.e., Fig. 6-b) produce no apparent merging while other variants

do (i.e., Fig. 6- c and d). Of the variants that produce a unified

circuit graph, our logic reduction technique (in some cases)

sufficiently removes enough of the redundancies in some cases so

that three distinct graphs emerge (i.e., Fig. 6-g). Table 5

summarizes simple graph-based observation of our 40 circuit

variants, both before (Table 5-Variant columns) and after

applying reduction (Table 5-Reduced columns), and whether or

not we observe three distinct graphs (NO) or a single graph (YES).

Table 5. Report on Graph Variants Merging (YES=merged)

We consider instances where three distinct graphs are observed as

outright failures in terms of component hiding. In cases where one

graph remains, we also observe that iteration and generation

options (Redundant or Standard) affect whether reduction allows

identification of the original three circuit graphs. These results

confirm our observations based on gate size and level as presented

in Table 4–in particular, higher reduction rates on logic

minimization tend to indicate less likelihood that component

hiding emerges as a by-product of a random variation process.

4. CASE STUDY EXPERIMENT
Given these results, we note that all 40 circuits in question would

all fail circuit level logic synthesis analysis because 15 input, 6

output circuits are well within the range of commercial tools and

heuristic minimization algorithms to analyze. Consistent with our

discussion in Section 2, truth table analysis would clearly reveal

the input/output independence of the original three circuits that

we merge together to produce our starting case circuits.

Therefore, no white-box structural variation (alone) can hide

component information for circuits with components that are

independent of each other.

Though the results of our logic-based pattern matching

experiments give some indication of whether one algorithm may

produce better component hiding as an artifact, we desire to know

whether component hiding artifacts would be present in more

realistic, larger scale circuit examples. For this purpose, we

create five artificially "worst-case" circuits that are themselves

merged versions of smaller, independent circuits. In some cases,

we utilize existing circuits from the ISCAS-85 benchmark set, and

in other cases we create our own test cases.

4.1 Experimental Circuit Set
For our case study, we develop a set of five circuits with

distinctive characteristics. All circuits have in common the fact

that they are composed of independent circuits merged together

and sharing common circuit I/O boundary, exhibiting our worst-

case scenario in terms of component hiding. For two circuits, we

compose the c432, c499, and c880 ISCAS-85 benchmark circuits

(seen as c432-c499 and c432-c880 in Table 6). The merging of

c432 and c499, for example, produces a 77-bit input and 39-bit

output circuit. The "ISCAS Merge" circuit represents a

composition of 8 independent circuits together, reaching an I/O

space of 362 bits and 192 outputs. We also consider two hard-case

scenario circuits that are simply inputs tied to outputs, or in other

words, circuits with only buffers connecting each input with its

output. Such a circuit duplicates every input on its output bits.

We consider a 100-bit buffer circuit (Buffer-100) as well as a 500-

bit version (Buffer-500) for analysis purposes.

The original versions of each circuit in the case study show

independent disconnected graphs among their constituent

components. They represent larger scale circuit versions which

may force adversarial analysis tools (such as commercial

reducers) to rely on other than best-case reduction or logic

synthesis. Our interest in the case study analysis remains whether

pattern-based logic reduction holds promise when compared to

commercially available tools and whether either form of analysis

breaks down with larger I/O space circuits.

4.2 Experiment Setup
For our synthesis analysis, we use Quartus II , a software tool

developed by the Altera Corporation for the design and synthesis

of circuit designs for FPGAs and other programmable devices.

Using Quartus II , we were able to compare pattern-based

reduction with commercial optimization in several ways. In terms

of producing variants for analysis, our case study comparison

only considers a simple or complex version of the generation

algorithm, as seen in Table 6. For the simple algorithm approach,

we use only a 2-gate random selection and 3-gate fully random

replacement. We run some number of iterations that range from

3000-10000. For the complex algorithm approach, we utilize a

variety of selection algorithms that pick 1, 2, 3, or 4 gates and

replace them with a random choice, up to 2 to 3 gate sizes larger.

Since not every selection has a valid replacement for the given

size requested, we also use goal-based measures to guarantee a

minimum number of replacements. Our case study used

anywhere from 3000-5000 guaranteed replacements in the

complex approach.

For minimization and analysis of the variants, we use two

approaches. First, we convert circuit variants into an appropriate

VHDL form and use Quartus II to analyze them. Second, we

perform pattern-based reduction as described in Section 3. Using

the synthesis tool, we employ the technology viewer mode to see

how a circuit NETLIST is synthesized for an FPGA. Such

analysis provides us insight as to whether the tool associates

inputs with outputs and whether or not inputs from different

components drive outputs in other components. The tool, for

example, rendered as three independent sub-circuits (based on

input and output correlation or pin groupings) and mapped to

specific independent sets of logic units.

4.3 Case Study Results
To summarize the results of our study, we present in Table 6 the

percentage reduction in size and levels, based on the original, of

our test circuit variants (both simple and complex) based on our

pattern-matching algorithm. We also list the graph-based analysis

view of each original and their variants, based on how many

distinct, independent components are visible.

Table 6. Case Study Summary Results

Table 6 illustrates that, at least for simple-algorithm variants, our

logic-based pattern matching reduction performs comparably to

the Quartus II tool. We note that the ISCAS Merge circuit proved

the most difficult to analyze for either tool. In the case of 500-

buffer circuit, the tool did not have the I/O pin capability that

could handle the circuit, but our analyzer provided modest

reduction in the simple-algorithm variant. The number of logic

cells reported by the tool also represents around 6-8 gates of

realized circuitry as each one implements a configurable 16-bit

look up table. We note in summary that the pattern-based

reduction meets our expectations considering results indicated by

circuits under study in Section 3. Namely, variants produced by

simple selection algorithms (2 gate selections) reduce at higher

rates than variants created with more complex pattern capability.

5. CONCLUSIONS
In this paper, we report experimental results of using logic-based

pattern matching algorithms as a red-team analysis tool for circuit

variants intended for obfuscating or protecting intellectual

property. We show the efficacy of pattern-based matching

algorithms and their effect on circuit variants, providing a

concrete approach to compare and understand different generation

algorithms. Much future work remains to refine our logic-based

pattern matching algorithm to be more competitive with currently

available commercial synthesis tools. We note, in conclusion,

that none of our experimental options for producing the circuit

variants were deterministically geared to produce component

hiding. We only consider random variation with some small

degree of determinism in how the experimental generation

proceeds. We demonstrate, at least empirically, that hiding

properties such as component hiding, may be achievable as

attributes of variation processes that exploit maximum

randomness in the choices of the circuit generator. Future work

will focus on additional aspects of hiding, especially when

deterministic means are integrated into the generation process.

6. ACKNOWLEDGEMENTS
This material is based upon work supported in part by the U.S.

Air Force Office of Scientific Research under grant number

F1ATA09048G001. The views expressed in this article are those

of the authors and do not reflect the official policy or position of

the Unites States Air Force, Department of Defense, or the U.S.

Government.

7. REFERENCES
[1] S. Goldwasser and G. Rothblum, "On best-possible obfuscation,"

LNCS, Vol. 4392, TCC 2007, Springer, (21-24 Feb 2007), 194–213.

[2] B. Barak, O. Goldreich, et al. "On the(im)possibility of obfuscating

programs," Elec. Coll. on Computational Complexity, 8, 2001.

[3] C. Collberg and C. Thomborson, "Watermarking, tamper-proofing,

and obfuscation: tools for software protection," IEEE Trans. Softw.

Eng., 28(8):735–746, 2002.

[4] F. Brglez and H. Fujiwara, "A neutral netlist of 10 combinational

benchmark circuits," Proc. IEEE Intl Symp. Circuits and Systems,

IEEE Press. Piscataway, N.J (1985) 695–698.

[5] J. T. McDonald, Y. Kim, and A. Yasinsac. Software issues in digital

forensics. ACM Operating Systems Review, 42(3), April 2008.

[6] E. Chikofsky and J. H. Cross II. “Reverse Engineering and Design

Recovery: A Taxonomy," Crosstalk, January 1990.

[7] M. Hansen, H. Yalcin, and J. Hayes, "Unveiling the ISCAS-85

benchmarks: a case study in reverse engineering," Design & Test of

Computers, IEEE, 16(3):72–80, 1999.

[8] C. Alpert and A. Kahng, "Recent directions in netlist partitioning:A

survey," Integration: The VLSI Journal, 19:1-81, 1995.

[9] H. Kim, "Removing Redundant Logic Pathways in Polymorphic

Circuits," Master’s Thesis, A.F. Institute of Tech., March 2009.

[10] Y. Kim and J.T. McDonald, “Considering Software Protection for

Embedded Systems.” CrossTalk: The Journal of Defense Software

Engineers, 4-8, Sept/Oct 2009.

[11] J. White, A. Wojcik, M. Chung and T. Doom, “Candidate subcircuits

for Functional Module Identification in Logic Circuits.” GLSVLSI

‘00, Proceedings of the 10 th Great Lakes Symposium on VLSI,

ACM SIGDA, 34-38, 2000.

