
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—The de facto standard program obfuscation security

model, termed the virtual black box (VBB), declares a program
to be securely obfuscated if and only if an adversary can prove
no more when given the obfuscated code than it can when only
given oracle access to the original program. In this paper, we
define and give methodology for a perfectly secure program
intent obfuscation that is general and practical for bounded
input-size programs, including those with input/output
relationships that are easily learned. We also lay foundations for
how to embed a key securely in a private-key encryption setting
using such constructions.

Index Terms—Program obfuscation, virtual black box,
software protection, information security, embedded keys

I. INTRODUCTION
N their well known result, Barek, Goldreich, et al. [1] state
that no efficient, general obfuscators exist in the virtual

black box (VBB) model. Under VBB, any candidate
obfuscator O(⋅), when given input program P, must in
polynomial time produce a semantically equivalent version P’
that is roughly similar in efficiency to P. According to VBB,
any predicate which is polynomially computed from P’ must
also be polynomially computed given oracle-only access to P.
Though Barak et al. speculate that obfuscators may exist for
some classes of programs, Goldwasser and Kalai [2] expand
the impossibility result by covering cases where an adversary
has some additional a priori information when given P’. They
show that many natural classes of functions cannot be
obfuscated with respect to auxiliary input, both when the
auxiliary input is dependent of the function being obfuscated
and even when the auxiliary input is independent of the
function being obfuscated.
In this paper, we show how to produce a semantically secure

Manuscript received December 1, 2006. This material is based upon work

supported in part by the U.S. Army Research Laboratory and the U.S. Army
Research Office under grant number DAAD19-02-1-0235.

J. Todd McDonald is an Assistant Professor in the Dept. of Electrical and
Computer Engineering, Air Force Institute of Technology, 2950 Hobson Way,
Bldg 640, Rm 304-A, Wright Patterson AFB, OH 45433-7765 USA. The
views expressed in this article are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of
Defense, or the U.S. Government.

Alec Yasinsac is an Associate Professor in the Computer Science
Department at Florida State University, 262 James Jay Love Building,
Tallahassee, Florida 32306-4530, USA 850.644.6407, 850.644.0058 (fax),
yasinsac@fsu.edu,

obfuscation for {Pn}n∈N, which is the class of programs with
input size n. Unlike other results, the only definition we give
for Pn is a polynomially-related bound b on the input size such
that n, b ∈ N and 2n ≤ nb. Given such a bound, we show how
to produce circuits that are efficient, semantically recoverable,
and virtual black box protected with regards to the original
program. The algorithmic complexity of the obfuscation is
exponential, but, when bounded polynomially, is practical for
a relevant class of programs—discussed next.

II. MOTIVATING EXAMPLES
In order to frame our formulation, we illustrate first the

class of programs we are interested in obfuscating, which are
those with small (bounded) input size. Our construction is not
comprehensive to all programs because the obfuscator or
obfuscated circuit is not efficient for all input-size programs;
yet we present four potential application categories that can
naturally leverage the strength of our approach, though there
are many other such potential application categories.

1. Sensor nets. Sensors (depicted in Figure 1) are

canonically resource constrained and typically process
small sized input, e.g. 16 bits. A manufacturer could
create a perfect VBB obfuscation to field such a sensor to
protect their intellectual property.

2. Location information. Positioning devices utilize

numerically intensive functions. Mathematical input can
often be very efficiently represented. Thus, location
finding or tracking devices are potential perfect
obfuscation applications.

3. Financial transactions. There is a clear need to protect

programs that compute financial data. Many important
financial programs take small mathematical input and,
thus can be target applications for perfectly secure
obfuscation.

4. Protecting embedded keys. Our second most important

contribution is to recognize that the perfect obfuscation
we introduce can absolutely protect embedded key
encryption algorithms in executing program code. For an
application with suitable input size, simply compose the
code with an appropriate encryption algorithm and apply
our construction to create the obfuscation. The key (and

Applications for Provably Secure Intent
Protection with Bounded Input-Size Programs

J. Todd McDonald, Member, IEEE and Alec Yasinsac, Senior Member, IEEE

I

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

the seam between the application and the encryption
algorithm) are provably hidden within the obfuscation.

Take for example a sensor that is deployed in a remote

operating location as illustrated in Figure 1. The output of the
sensor is a broadcast stream of binary digits (64 bits at a time)
that is carried by some means to a remote processing facility.
If the sensor were captured by an adversary who had the
capability to disassemble it and look at its internal structure, it
may become obvious to the adversary (after some reverse
hardware engineering process) that the sensor uses
temperature readings and motion sensor related data. For
temperature, an input size of 8 bits is used (capturing a range
from -100O C to 100O C) and, for motion sensor data, 24 bits is
required. The software inside the sensor thus takes in 32 bits
of input and outputs 64 bits of data every time a reading is

taken (all of which are observable by the adversary).
We want to protect the intent of the application software

embedded in the sensor so that the adversary cannot foil the
detection properties of the sensor or even understand what
processed information is being relayed back to the processing
facility based on the input. In other words, we want to ensure
that both the input/output (black-box) relationships of the
sensor and the algorithmic information (white-box) of the
sensor’s embedded circuitry are securely and provably
protected. We produce the construction for an obfuscator that
accomplishes these goals for the embedded program software.

III. OBFUSCATION SECURITY MODELS
There are generally two appeals for measuring

cryptographic security strength: information-theoretic and
computational-complexity. The former is strongest and is
based on whether breaks are possible (unconditionally) while
the latter is based on whether breaks are feasible. In terms of
data ciphers, an encryption scheme is considered insecure in
the information-theoretic sense if the ciphertext contains any
information about the plaintext. In the computational-
complexity model, it only matters whether information about
the plaintext that is contained in the ciphertext can be

efficiently extracted.
With information-theoretic secrecy, an ideal security model

is used to show that any candidate security solution is nearly
as good as the ideal one. This implicit approach is quite
different from the explicit complexity method which must
define an adversary task and then show that the task is
computationally difficult. Heuristic techniques and some
computational approaches are deemed a form of “fuzzy”
security (neither well defined nor precise) because they rely
on capturing all possible adversarial actions. Defining such
actions is difficult and computational/heuristic approaches
may suffer from a use/break/tweak/use cycle. These
foundational differences in defining security apply directly to
the discussion of how we can securely obfuscate a program.

For some time, obfuscation researchers have found results
based on both computational and information-theoretic
models. The security characterization of obfuscation has been
described as NP-easy [3], derivable in limited contexts [4,5],
and proven to be NP-hard [6,7,8] / PSPACE-hard [9] based on
specific protection mechanism. Heuristic approaches include
techniques based on the hardness of interprocedural analysis
[8], key-based generation of pseudorandom encrypted cope
(decrypted just prior to execution) [10], and applying
cryptographic primitives for constant hiding [4]. Collberg
defines several complexity metrics that are designed to
analyze the “hard to understand” quality of practical
techniques [6]. In [11], Drake characterizes obfuscation as a
refinement/proof process on data structures (versus
algorithms).

Yu and his colleagues have recently found several positive
results for completely hiding circuit topology in the
information theoretic sense [12,13]. Canetti [14] and Lynn et
al. [5] provide formulations for point-function obfuscation
under the random oracle model while Wee [15] provides a
secure point-function construction under VBB. We have
developed a provably secure black-box program protection
mechanism in [16] similar to that of Ostrovsky and Skeith’s
recent work [17] based on public-key obfuscation that
produces encrypted, recoverable program output. Other
research has focused on hardware supported program security
[18], protection of embedded keys [19], and protecting mobile
programs [20].

The VBB model of measuring obfuscation security
essentially levies an information theoretic requirement: an
adversary should learn no more when given the obfuscated
version (i.e., executable ciphertext) of a program than it
should when given black-box access to the original
(executable plaintext) version of the program. Because of the
impossibility results under VBB, it has been very hard
(impossible) for any practical implementations of obfuscation
to demonstrate measurable security properties.

We illustrate next a generalized obfuscation technique that
produces perfectly protected circuits from any program with
bounded (small) input size. The circuits are unconditionally
and perfectly secure (at least from the “notion” of a virtual
black box). Though the process is not efficient for all input-

Fig. 1. Application Example for Bounded Input Size Program. A sensor
node receives some number of (possibly small) input bits from its
environment (temperature, motion data, etc.). The node performs some
algorithm (that we want to intent protect) and produces an output stream that
is sent to some (external) processing facility.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

size programs, we use it nonetheless to illustrate that virtual
black-box (perfectly secure) protection can be achieved for a
relevant, real-world class of programs.

IV. BRIDGING THEORY AND PRACTICE
Even though Turing machines are not physically

constructible, they represent the theoretical underpinning of
computer science; any best-case implementation of a Turing
machine would require a (bounded) limit on infinitely defined
tapes. If we desire a true information-theoretic proof that an
obfuscated program does not leak any information regarding
the original program, then we must show that the obfuscated
program behaves exactly (and only) like an oracle for the
original program would. By definition, an obfuscated circuit
P’ should not leak any more information about P than the
oracle of P reveals.

A. Bounded Input-Size Obfuscation
Obfuscators that use only oracle-access to a function P, and

not the original function P itself, have possibility for
achieving information theoretic security. We state in
Definition 1 the notion of a generalized program obfuscator
related only to bounded program input-size.

Definition 1. (bounded input-size program obfuscator)
An algorithm O is an obfuscator for the class of b-bounded
input size programs {Pn}n, b∈N, 2

n
≤ n

b, where P ∈ Pn if:
1. Semantic Equivalence: ∀x, P(x) = P’(x), where

P’=O(P)
2. Efficiency: There is a polynomial l(⋅) such that for

every n, b∈ N where 2n ≤ nb, and for every P in P,
|O(P)| ≤ l(|P|)

3. Perfectly Secure Obfuscation: For any PPT A,
there is a PPT simulator S and a negligible function
α such that for every n, b∈N where 2n ≤ nb, and for
every P ∈ Pn,

)(]1))1(Pr[]1))((Pr[nSPOA nP α≤=−=

A function α: N→R+ is negligible if, for any positive
polynomial p, there exists N∈ N such that α(n) < p(n)-1 for
any n > N.

In the information theoretic sense, perfectly secure

obfuscation is defined by information gained by a PPT
simulator SP that has oracle-only access to some original
program P. If a PPT algorithm uses only the information
gained from an oracle of P to construct a semantically
equivalent circuit/program P’ for P, then it is impossible for
any circuit/program P’ created in a such a manner to leak
more information than what the oracle for P could give. In
particular, an oracle for P may be simulated by an algorithm
that utilizes the truth table of P. The existence of such an
oracle simulator for P assumes that the possible input range of

P and its corresponding output can be fully enumerated,
stored, and accessed.

We pause to clarify and amplify an oracle’s capability.
Classically, an oracle answers questions with no notion,
reference, or intuition on our part as to how it knows the
answer; we universally accept that the oracle’s answers are
correct. We utilize truth tables in our arguments because they
capture the oracle’s capability for answering function queries,
since each answer, essentially, fills in a space in the function’s
truth table.

In their argument formulation, Barak et al. acknowledge a
valid obfuscation exists for circuits in the following manner:

“Note that if we had not restricted the size of the
obfuscated circuit O(C), then the (exponential
size) list of all the values of the circuit would be
a valid obfuscation (provided we allow S
running time poly(|O(C)|) rather than
poly(|C|)).” [1]

 We explore this statement and define explicitly the
constructions related to this possibility. The VBB
impossibility proofs in general deal with (contrived) functions
where the input size is too large for practical truth table
enumeration—therefore a simulator with oracle access to an
original program P (defined as SP) can do no better than
guessing based on oracle-queries. We consider instead the
family of functions whose input size is small and therefore
whose input/output behavior is not prohibitive for a simulator
to enumerate.

Barak et al. also state that the foundation of (all) of their
proofs derive from the “fundamental difference between
getting black-box access to a function and getting a program
that computes it, no matter how obfuscated” [1]. They go on
to state that this difference disappears if the function is
learnable completely from oracle (black-box) queries. Our
interest in bounded input-size programs is that their truth
tables can be obtained efficiently when they have a
sufficiently limited input size.

Some functions are easily learnable in that they can be
learned from partial truth tables. Our results address functions
whose truth tables can be completely constructed in
polynomial time from oracle access, and point out that even
for functions whose complexity grows exponentially, truth
table construction complexity simulates polynomial growth
for small input sizes. This function class provides the
opportunity to observe provably VBB protected circuit
implementations.

A natural question to ask is: “How (can) protecting a
circuit/program whose truth table can be computed provide
security?” As we mention in our review of obfuscation
security models, the value of an obfuscation model where the
obfuscated version of a program/circuit is not semantically
equivalent to the original program/circuit has already been
demonstrated. In our ideal construction (under Theorem 3),
the obfuscated program’s truth table is black box protected

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

and, thus, does not reveal anything about I/O-based intent.
Moreover, the canonical circuit construction described in
Theorem 1, when used as an obfuscation technique, reveals
nothing about the original circuit structure, thus providing
perfect white box protection.

Theorem 1: Perfectly secure obfuscators exist for b-
bounded input-size programs (under Definition. 1).

Proof: Our proof is by construction. We give a three step
obfuscator O(P) that takes any executable program P, generates
the truth table from oracle access to P, and applies a Boolean
canonical reduction on the truth table to produce a circuit that is
semantically equivalent to P. Assume n is the input size of P and
let 2n ≤ nb, for some user specified b.

Then: O is a b-bounded input-size program obfuscator for the
class of programs {Pn}n,b∈N, 2

n
≤ n

b, for any P ∈ Pn, under the
following construction:

Step 1. Using P, acquire or create SP as an efficient oracle
emulation of P.
Step 2. Generate the truth table for P, T(P), by running SP on all
2n inputs of P. Assuming P: {0,1}n → {0,1}m , T(P) is the m⋅2n size
matrix of input/output pairs obtained in the following manner: ∀x,
[x,y] = [x, SP(x)], where SP is a PPT simulator with oracle access to
P.
Step 3. Create circuit P’ by applying the algorithm for canonical
complete-sum of products [21,22] to T(P). P’=∑i=1,…,n πi, is in
disjunctive normal form (DNF) where each product πi is a conjunct
of literals and each literal is either an input variable xj or its
negation x’j (1 ≤ j ≤ n). Minimize P’ via heuristic minimal-sum of
products algorithm such as Blake’s reduction based on Shannon’s
recursive expansion.

1. P’ is perfectly secure with respect to P. Since P’ = O(P),
T(P) is fully derivable given P assuming some
polynomially bound b on input size n. Given bounded
size, the following relationship holds between any PPT
simulator SP and obfuscator O. Both can derive T(P) and
thus a canonical circuit for P in polynomially bounded
time.

)(]1))1(Pr[]1))((Pr[nSPOA nP α≤=−=

,
 for bounded n.

2. For ∀x, P(x) = P’(x). By construction, P' precisely

implements T(P).
3. There is a polynomial l(⋅) such that for every n,b∈N

where 2n ≤ nb, and for every P in P, |O(P)| ≤ l(|P|). In the
worst case, a complete sum-of-products expansion is
composed of m outputs consisting of up to 2n minterms
composed of up to n-1 products (AND) and up to 2n-1
summations (OR). The maximum size, m2n(n-1)(2n-1), is
O(2n) while the minimal possible size is Ω(m)—
representing where each output is constant 0. By
bounding the input size of program P with b, the size for
the complete sum of products expansion circuit becomes
O(nb). We would not (in practice), use the complete sum

of products expansion because much more efficient
representations are possible. From the security aspect
alone, however, any more-efficient derivation of the
complete sum of products circuit retains the perfectly
secure obfuscation (hiding) property.

4. The minimal SOP expression of P’ is polynomially
equivalent in input-size to the original P related to some
polynomial bound b, because n = |xP| and |P’| ≤ nb.

We point out that obfuscators constructed under Theorem 1

produce perfectly white-box protected circuits (in the
information theoretic sense) from bounded input-size
programs, but assume nothing about the hardness or difficulty
of learning the original program P. If the input/output of P
(and thus any semantically equivalent version of P such as
P’), reveals the intent or function of P, then no degree of
white-box hiding can prevent the adversary from learning the
function of P from the input/output relationships of P’. The
truth-table derived construction of Theorem 1 perfectly hides
only the algorithmic construction of P—and nothing more.

B. Protecting Embedded Private-Key Ciphers
In the VBB constructions, P is assumed to be a function

whose input/output behavior is hard to learn to begin with.
However, constructions under Theorem 1 point out two useful
practical realizations when used in context to hard-to-learn,
one-way, pseudorandom functions: truth-table-based circuit
derivations provide a method to hide embedded encryption
keys programmatically and perfectly secure obfuscated
private-key encryption schemes are possible where the
(unpadded) input size (of the plaintext) is bounded.

A block cipher is a function E: {0,1}k x {0,1}m → {0,1}m that
take a k-bit key and an m-bit (block length) plaintext input and
returns an m-bit ciphertext string. The inverse function D:
{0,1}k x {0,1}m → {0,1}m takes the k-bit key and an m-bit
ciphertext string and returns an original m-bit plaintext string.
We let EK(M) denote the encryption of message M∈ {0,1}m
with a specific key K ∈ {0,1}k and let DK(C) denote the
decryption (inverse encryption) of message C∈{0,1}m with a
specific key K ∈ {0,1}k. We assume that any block cipher E of
interest to us is a strongly pseudorandom function that is a
permutation on {0,1}m, as defined for example by Goldreich in
his textbook [23].

Several block-cipher-based, private-key encryption
schemes exist with pseudorandom properties. DES with fixed
message size has been characterized as a candidate one-way
function (assuming one-way functions exist) among other
algorithms such as RSA. The hardness of key recovery and
the one-way properties of ciphers such as DES are well
established and pseudorandom properties of the DES family is
discussed by Bellare et al. in [24] and Goldreich in [23]. Our
interest in the DES family of functions, including variants
such as 3-DES, is the comparatively small block size of the
plaintext (64 bits). Though the virtual key size of 3-DES is
larger than 56 bits, we focus on DES nonetheless with its
standard 56-bit key space.

In Definition 2, we specify the requirements for an

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

obfuscator of block-based private-key encryption schemes
(such as DES), that provides a semantically secure hiding of
an encryption key. In essence, the obfuscator O(K,E), under
this definition, takes a private-key K and block encryption
algorithm E(K,·) and returns EK(·) such that no key-recovery
attack can reveal the key K based on analysis of the source
code/gate structure of EK. Theorem 2 now gives the
formulation for obfuscating a key-embedded block cipher
under the construction of Theorem 1.

Definition 2. (private-key block encryption program
obfuscator) The tuple of PPT algorithms (KG,E,D,O)
enforces perfectly secure obfuscation in the private-key
setting with security parameter k and block-size m for the
class of programs {Ek,m} where E ∈ Ek.m if:

1. Private Key Encryption: (KG,E,D) defines a

pseudorandom private-key block encryption scheme with
block-size m and security parameter k:

KG: a probabilistic algorithm which picks K (on input 1k, produces
key K); assume KG never produces “weak” keys

E: {0,1}k x {0,1}m → {0,1}m, on input K ∈ {0,1}k and plaintext
message M ∈ {0,1}m, produces ciphertext C ∈ {0,1}m

D: {0,1}k x {0,1}m → {0,1}m, for all)1(kR KGK ⎯⎯← and M ∈
{0,1}m, DK(EK(M)) =M,

2. Semantic Equivalence: Given)1(kR KGK ⎯⎯← and
program E ∈ Ek.m,∀x, E(K,x) = E’(x), where E’ = O(K,E)
= EK(·)

3. Efficiency: There is a polynomial l(⋅) for every E in Ek.m
|O(K,E)| ≤ l(|E|)

4. Perfectly Secure Obfuscation: For any PPT A, there is
a PPT simulator S and a negligible function α such that
for every for every E ∈ Ek.m and for every

)1(kR KGK ⎯⎯←

)(]1))1(,Pr[]1)),((,Pr[nSEEKOAE mEK α≤=−=

We assume any distinguisher does not have access to the
private key K but has knowledge of the encryption
program E.

Theorem 2: Perfectly secure obfuscators exist for b-
bounded input-size private-key block encryption programs.

Proof: Our proof is by construction. We give a three step

obfuscator O(·) that takes)1(kR KGK ⎯⎯← and block-cipher program
E with block-size m and key-size k, generates the truth table from
oracle access to E(K, ·), and applies a Boolean canonical reduction
on the truth table to produce a circuit E’ that is semantically
equivalent to E(K, ·).

Let circuit E’ = O(TEK)= O(K,E) be an obfuscation of the
encryption program E with embedded key K (i.e. E' retains the
functionality of E(K,·)) where TEK is the truth table of E(K, ·).
Assume m is the input size of E and n is the virtual (unpadded)

input size of the plaintext where n ≤ m and let 2n ≤ nb, for some
user specified b. Let TEK be generated through the PPT simulator
SE.

Then: O is a b-bounded input-size private-key block encryption
program obfuscator for the class of programs {En}n,k,b∈N, n≤m, 2

n
≤ n

b,
for any E ∈ Ek.m

Given E ∈ Ek,m and)1(kR KGK ⎯⎯←
Step 1. Acquire an efficient implementation of E, SE, to use as
oracle emulation.
Step 2. Generate the truth table for E(K,·), TEK by running SE on
all 2n inputs of E, where n is related to the polynomial efficiency
bound b. Where n < m, pad each input with m-n zeros.
Step 3. Create circuit E’ by applying the algorithm for canonical
complete-sum of products to TEK. E’=∑i=1,…,n πi, is in disjunctive
normal form (DNF) where each product πi is a conjunct of literals
and each literal is either an input variables xj or its negation x’j (1 ≤
j ≤ n). Minimize E’ via minimal-sum of products algorithm such as
Blake’s reduction based on Shannon’s recursive expansion.

From Theorem 1, E’ has the same characteristics based on its
construction and meets requirements for semantic equivalence,
efficiency, and perfectly secure obfuscation.

We distinguish between the block-size of cipher E which is

m and our desired (bounded) input-size n. We establish that n
≤ m and 2n ≤ nb for some user specified b. Where n = m, no
padding of the input is necessary for E(K,M). Where n = m is
too large for a user chosen bound b (meaning there are not
enough computational resources available to achieve truth
table elaboration or the reduced sum-of-products circuit
derivation), an input size reduction is necessarily in order to
meet the efficiency requirements for a polynomial bounded
circuit size on E’ or polynomial time speed for O. Where n <
m, we must choose whether to pad with m-n zeros or to pad
with a (randomly) chosen m-n bit string. We assume padding
with 0 for simplicity at this point but point out that our
plaintext message space is now {0,1}n as opposed to{0,1}m.
The security ramifications where the adversary knows that a
(possibly) reduced (virtual) block size is being used is a
separate but related discussion to whether the adversary can
recover the key K when given the source code (gate structure)
of E’.

Consider, for example, that we could easily encrypt the
output of our sensor from Figure 1 using an embedded-key
DES program because the sensor outputs 64 bits of data at a
time (which matches the block input size of DES). The
encrypted computational result DESK(sensor(x)) could then be
sent back to the processing facility, decrypted using the
private key K, and then analyzed. The only stipulation given
under Theorem 2 is that we have computational resources
related to the bound b such that 232 < 32b. The primary
limiting factor is the input size of the sensor since the size of
circuit is only polynomially related to the number of outputs
(which would be a factor of the encryption algorithm E). If
there are adequate computational resources to accomplish the
truth table enumeration for the 32-bit input/64-bit output

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

matrix, then circuit E’ can be constructed and a perfectly
secure key-embedded circuit can be used in the sensor.

 Assume that the output of the sensor described in Figure 1
were 32 bits instead of 64. We are confronted with the fact
that only 32 bits (not the total 64 bit block size) of DES are in
view. For a DES program that takes messages that are 32 bits
long, the job of the adversary is to find the one truth table out
of the approximately 256 possible truth tables (excluding those
based on weak keys) that is based upon the specific K that is
embedded in E’. For our specific sensor example, each truth
table is a possibly 232 enumeration (versus a 264 enumeration)
of entries corresponding to each message/ciphertext pair.

The obfuscators defined under Theorem 2 need only
produce one of these truth tables in order to embed the key
with perfect semantic protection in the circuit E’. The
adversary (on the other hand), must enumerate up to 256 such
truth tables in order to use the circuit E’ to pinpoint the
particular key K embedded within. Because of the
construction process for circuit E’, which is based only on the
input/output relationships of an embedded-key encryption
operation, the adversary cannot discover the key K by
examination of the actual gates of circuit E’. In fact, the gates
of E’ only yields semantic information concerning the
input/output behavior of EK, and nothing more. The adversary
can do no more than observe input/output pairs which are
obtained from execution of E’ itself.

We pause here to mention that an adversary that has
possession of an (embedded) key-based cipher and knowledge
of the underlying cipher/algorithm can actually pinpoint the
particular key based on input/output pairs. If the key-space is
within reasonable computational range, the adversary need
only enumerate all keys and run a single input into the
(known) encryption algorithm to produce a corresponding
ciphertext output. This pair may then be compare with the
input/output of the embedded-key cipher. Because of the one-
way nature of the cipher, the plaintext/ciphertext pairs for all
possible keys would uniquely pinpoint the embedded key—
assuming the adversary can enumerate all key space
possibilities. In the case of embedded-key ciphers, the
adversary can perform a wide range of cryptanalysis attacks
not possible when they only have possession of ciphertext or
plaintext alone.

Given a possibly reduced message space for DES, the
security of the circuit E’ is certainly related more to the key-
space of DES than the reduced message space 2n versus 2m.
We can leverage this observation and replace the DES56
program with 3DES56, AES128, AES512, RSA512, RSA1024, or
even an RSA2048 variant. In each replacement just mentioned,
the efficiency of the obfuscator under Theorem 2 given a
bounded input size (32-bits in our example) increases only in
relationship to the additional running time incurred by the
oracle for each prospective encryption algorithm to generate
one truth table. The circuit size of E’ does not vary based on
the encryption algorithm chosen other than a linear variation
based on additional output bits (64-bits versus 128, 512, 1024,
etc.).

We can use public key encryption algorithms under this
same construction with both public and private keys held
private. This fits especially well with the computational
model of a remote processing sensor data because the
execution environment of the program (the sensor) does not
require decryption of the data it is processing. We can also
introduce randomness or variation into the way in which we
construct the cipher itself; we may consider a key-based
method of concatenating ciphers with other ciphers as a viable
alternative

C. Generalized Program Intent Protection
Consider now a sensor that takes in 32 bits of data and

produces 32 bits of input: an adversary may observe much less
than 232 input/output pairs of the sensor in order to adequately
determine the programmatic intent of the sensor and therefore
find an (effective) way to subvert it. Theorem 3 provides a
basis to consider any bounded input-size program P that has
(easily) learnable input/output patterns versus one-way
relationships (like DES56) that are assumed provably hard to
learn. Figure 2 gives a notional/ specific view of this

construction using a program P and a 3DES encryption
algorithm.

In this construction, a circuit P’ is constructed from the
catenation of the output of program P with a data encryption
cipher E (which is a 3DES cipher that uses 2 keys in an
encrypt-decrypt-encrypt relationship). As illustrated, P is a
function P: {0,1}|xP| → {0,1}|yP| and E is a function 3DES K1,K2:
{0,1}64 → {0,1}64 with two embedded keys. We assume the
output size of P, |yP|, is less than or equal to the input size of
E (which for 3DES is 64 bits). The circuit P’ is a
concatenation of P and E that then becomes a virtual black
box, such that for all input x, P’(x) = 3DESK1,K2(P(x)).

We note that Ostravsky and Skeith define similar public key
encryption-program-padding obfuscators in [17] with follow
on work by Adida and Wikström [25] that implements such
constructions in obfuscated mixnet programs. Our own
semantic transformation obfuscation technique described in
[16], which precedes these results, leaves open the possibility

Circuit P’

P” =P | E

Fig. 2. Fully Generalized Bounded Input-Size Program Obfuscation. By
composing program P with a (strong) data encryption cipher E. for all x,
P”(x) = E(P(x),K). By generating the truth table of P” for all inputs x, we
produce circuit P’ by applying standard Sum-of-Products derivation and
simplification. P’ is provably black-box and white-box intent protected
(VBB) with respect to P.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

for either a symmetric or asymmetric encryption algorithm to
effectively mask the original input/output patterns of an
original program via concatenation of program output. These
techniques of course rely on the underlying semantic security
properties of the encryption algorithm that is used. We adapt
such padding schemes to our construction to provide fully
general bounded input-size program protection and prove such
obfuscators exist for them in Theorem 3. We provide now a
definition and theoretical construction that would take any
bounded-input size program P that is (easily) learnable and
concatenate the output of that program with an embedded-key
strongly pseudorandom encryption algorithm. For brevity, we
only specify the symmetric/private-key block cipher variant
and follow the construction for obfuscated mixnets given in
[25].

For notational purposes, let P|E refer to the concatenation
of program P with the program E such that (P|EK)(x) =
EK(P(x)), for all x. Let P be defined as function P:{0,1}n →
{0,1}|yP| and E: {0,1}k x{0,1}m → {0,1}m. Let P|EK for
encryption algorithm E with embedded key K be defined as
P|EK: {0,1}n → {0,1}m.

Definition 3. (general obfuscator for easily learned
programs with bounded input-size) For PPT algorithms
KG,E,D,O, obfuscator O provides perfectly secure
obfuscation for the class of b-bounded programs{Pn}n,k,b∈N,

n<m, 2
n
≤ n

b where P ∈ Pn if:

1. Private Key Encryption: (KG,E,D) defines a
pseudorandom private-key block encryption scheme
with block-size m and security parameter k under
Definition 2.

2. Semantic Equivalence: Given)1(kR KGK ⎯⎯← and
program P∈ Pn,∀x, P(x) = DK(P’(x)) where P’=
O(K,P,E). Furthermore,∀x, P’(x) = EK(P(x)).

3. Generality: (|xP| = n) ≤ m, for all E ∈ Ek,m under
Definition 2

4. Efficiency: There is a polynomial l(⋅) for every P in
Pn, |O(K,P,E)| ≤ l(|P|)

5. Perfectly Secure Obfuscation: For any PPT A,
there is a PPT simulator S and a negligible function
α such that for every n,b∈N where 2n ≤ nb, and for

every P ∈ Pn and for every)1(kR KGK ⎯⎯←

)(]1))1(,Pr[]1)),,((,Pr[nSEEPKOAE nEK α≤=−=

Theorem 3: Perfectly secure obfuscators exist for b-
bounded input-size programs with easily learned I/O
relationships.

Proof: Our proof is by construction. We give a three-step

obfuscator O(·) that takes as input)1(kR KGK ⎯⎯← , a block-cipher
encryption program E with block-size m and key-size/security
parameter k, and a b-bounded program P with input size n and

output size |yP| ≤ m, and where 2n ≤ nb, for some user defined b.
Let circuit P’ = O(K,P,E) be an obfuscation of any general
program P with these constraints such that ∀x, P(x) = DK(P’(x))
and, ∀x, P’(x) = EK(P(x)).

Construct P’ = O(K,P,E) in the following manner:
Step 1. Given)1(kR KGK ⎯⎯← , let P” = P | EK. Acquire an efficient
implementation of ORACLEP” to use as oracle emulation.
Step 2. Generate the truth table T(P”) by executing ORACLEP”(x)
= E(K,P(x)) for all 2n possible inputs x of P. Where |yP| < m, pad
the output of P(x) with m - |yP| zeros.
Step 3. Create circuit P’ by applying the algorithm for canonical
complete-sum of products to TP”, as defined in Theorem 1.
Minimize P’ via standard heuristic 2-level reduction techniques.

Then:

1. E is hard to learn and therefore P”/P’ are hard to learn from
black-box observation alone. However, recovery of any
intended output of P (which is easy to learn) is possible because
∀x, P(x) = DK(P’(x)) = DK(EK(P(x)). Thus, the semantic
equivalence between P’ and P is established.
2. P’ is a perfectly secure obfuscation with respect to P and the
embedded-key encryption algorithm EK because P’ is produced
only from oracle access to P” = P | EK.
3. |P’| is poly-(n) given bound b.
4. O is a general, efficient obfuscator for any program P that
runs in poly-(n) time, given a bound b related to the input size of
P. P’ is roughly equivalent in efficiency to P. The minimal SOP
expression of P’ is polynomially equivalent in size to P related
to some bound b, because |P’| ≤ nb. Note that the size
characteristics of P’ are related to the input size of P and not the
possible input size of E.

D. Specifying Bounds
The generalized protection technique described in Theorem

3 depends clearly on the user-defined bound on program input
size. The parameter b is clearly based on computational
resources available to the user and reflects an acceptable limit
on exponential growth. For truth table derivation and sum-of-
product derivation, the storage available for the truth table
T(P”) and the size of the resulting circuit P’ become the
primary barometer for determining bound b. An input size
n=32 bits reflects a bounded input parameter b=7, since 2n ≤
nb, 232 ≤ 327. For a nominal desktop PC with 512 MB of
memory, 60 GB of disk space, and a medium sized process
(~1GhZ class), we have found n=32 (bits) to be a reasonable
program input size for truth table derivation / canonical circuit
creation within a day. To illustrate the magnitude of resources
(time and space) required for various input sizes, Table 1
shows the relationship between the computational bound
parameter b and input size (n). We expect with adequate
resources, input sizes of 128-256 could be realized for specific
applications of interest.

V. CONCLUSIONS
The techniques demonstrated in this paper illustrate that any

program, with small input size, is a candidate for practical and
provably secure obfuscation. They also reaffirm a primary

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

negative result under VBB that no general, secure, efficient
obfuscator exists for all programs (any input size). However,
the primary contribution we point out is that there are relevant
program classes that can enjoy secure obfuscation under VBB.

As Barak states in [26] concerning the existence of
unobfuscatable function families, “We believe the existence of
such functions shows that the virtual black box paradigm for
obfuscators is inherently flawed.” We believe also that a
security analysis model that characterizes practical
obfuscators is needed; particularly, a model that is not
inherently flawed and evaluates the relative strength of current
techniques that are predominantly based on confusion. The
model would of course acknowledge that (absolute or
unconditional) information theoretic security of the original
source code under VBB for general programs is not possible.
Such a better model has been elusive to realize, but we
address alternate possibilities for measuring obfuscation
strength in other work [27, 28].

In this work, we establish the possibility of generalized,
perfect obfuscation security in the information theoretic sense
for a limited, but useful and relevant, class of programs. More
importantly, we lay the foundations for how to embed a key
securely in a private-key encryption setting. Such
constructions can be used as a basis to securely transform a
private-key system into a public-key system—a long standing
problem in computer science.

REFERENCES

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P.

Vadhan, and K. Yang, "On the (im)possibility of obfuscating programs,"
in Proc. of CRYPTO '01, J. Kilian, Ed. Santa Barbara, California:
Springer-Verlag, LNCS 2139, Aug. 19-23 2001, pp. 1-18

[2] S. Goldwasser and Y. Kalai, “On the impossibility of obfuscation with
auxiliary input,” in Proc. of the 46th Annual IEEE Symp. on
Foundations of Comptuer Science, 2005.

[3] A. Appel, "Deobfuscation is in NP," unpublished manuscsript, preprint
available from http://www.cs. princeton.edu/~appel/papers/deobfus.pdf,
2002.

[4] N. Varnovsky and V. Zakharov, "On the possibility of provably secure
obfuscating programs," Perspectives of System Informatics, LNCS 2890,
pp. 91-102, 2003.

[5] B. Lynn, M. Prabhakaran, and A. Sahai, "Positive results and techniques
for obfuscation," Eurocrypt'04, 2004.

[6] C. S. Collberg and C. Thomborson, "Watermarking, tamper-proofing, &

obfuscation - tools for software protection," IEEE Trans. on Software
Engin., vol. 28, pp. 735-746, 2002.

[7] C. Wang, "A security architecture for survivability mechanisms," PhD
thesis, Department of Computer Science, University of Virginia, 2000.

[8] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji, “Software obfuscation on
a theoretical basis and its implementation,” IEICE Trans. Fundamentals,
vol E86-A, no. 1, January 2003.

[9] S. Chow, Y. Gu, H. Johnson and V. A. Zakharov, “An approach to the
obfuscation of control-flow of sequential computer programs,” Proc. of
ISC 2001, LNCS 2200, pp. 144-155, 2001.

[10] D. Aucsmith, "Tamper-resistant software: an implementation," Proc. of
the 1st Int’l Workshop on Information Hiding, LNCS 1174, pp. 317-333.
London, UK: Springer-Verlag, 1996,

[11] S. Drape, “Obfuscation of abstract data types,” Doctoral thesis,
Department of Computer Science, St. John’s College, University of
Oxford, UK.

[12] Y. Yu, J. Leiwo, and B. Premkumar, “Hiding circuit topology from
unbounded reverse engineers,” in L. Batten and R. Safavai-Naini (Eds.):
Proc. of ACISP 2006, LNCS 4058, pp. 171-182, 2006.

[13] Y. Yu, J. Leiwo, and B. Premkumar, “Securely utilizing external
computing power,” Proc. of the IEEE Int’l Conf. on Information
Technology: Coding and Computing (ITCC’05), 2005.

[14] R. Canetti, “Towards realizing random oracle: Hash functions that hide
all partial information,” CRYPTO’97, pp. 455-469.

[15] H. Wee, “On obfuscating point functions,” Proc. of ACM STOC’05, pp.
523-532, May 22-24, 2005.

[16] W. Thompson, A. Yasinsac, and J. McDonald, "Semantic encryption
transformation scheme," in Proc. of the Int’l Workshop on Security in
Parallel and Distributed Systems (PDCS 2004), San Francisco, CA,
2004.

[17] R. Ostrovsky and W. Skeith, “Private searching on streaming data,”
CRYPTO ‘2005, 2005.

[18] D. Lie, J. Mitchell, C. A. Thekkath, and M. Horowitz, "Specifying and
verifying hardware for tamper-resistant software,” in Proc. of IEEE
Symposium on Security and Privacy, Berkeley, CA., 2003.

[19] S. Chow, P. Eisen, H. Johnson, and P. C. van Oorschot, "A white-box
DES implementation for DRM applications," Proc. of the 2nd ACM
Workshop on Digital Rights Management (DRM 2002), LNCS 2696, pp.
1-15, 2003.

[20] T. Sander and C. F. Tschudin, "Protecting mobile agents against
malicious hosts," in Mobile Agent Security, LNCS 1648, G. Vigna, Ed.:
Springer-Verlag, 1998, pp. 44-60.

[21] J. Gregg. Ones and Zeros: Understanding Boolean Algebra, Digital
Circuits, and the Logic of Sets. IEEE Press. 1998.

[22] E. Mendelson. Schaum’s Outline Series: Theory and Problems of
Boolean Algreba & Switching Circuits. McGraw-Hill Book Company,
1970.

[23] O. Goldreich. Foundations of Cryptography. Cambridge University
Press, 2001.

[24] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security
treatment of symmetric encryption: Analysis of the DES modes of
operation,” Proc. of the 38th Symp. on FOCS, IEEE, 1997.

[25] B. Adida and D. Wikström, “Obfuscated ciphertext mixing,” IACR
Eprint Archive, no. 394, 2005.

[26] B. Barak, “Non-black-box techniques in cryptography,” PhD Thesis,
Weizmann Institute, 2003.

[27] A. Yasinsac and J. McDonald, "Of unicorns and random programs,"
Proc. of the 3rd IASTED International Conference on Communications
and Computer Networks (IASTED/CCN), Marina del Rey, CA, 2005.

[28] J. McDonald and A. Yasinsac, “Program Intent Protection Using Circuit
Encryption,” to appear, Proc. of 8th Int’l Symposium on Systems and
Information Security, Sao Paulo, Brazil, Nov. 8-10, 2006.

TABLE I

RELATIONSHIP BETWEEN (PROGRAM) INPUT SIZE
AND (COMPUTATIONAL) USER BOUND

Input Size
n

Bound
b 2n nb

16 4 65,536 65,536
24 6 1.67 x 107 1.91 x 108
32 7 4.29 x 109 3.44 x 1010
56 10 7.21 x 1016 3.03 x 1017
64 11 1.84 x 1019 7.38 x 1019

128 19 3.40 x 1038 1.09 x 1040
256 32 1.16 x 1077 1.16 x 1077
512 57 1.34 x 10154 2.68 x 10154

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

