
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1

  
Abstract—The de facto standard program obfuscation security 

model, termed the virtual black box (VBB), declares a program 
to be securely obfuscated if and only if an adversary can prove 
no more when given the obfuscated code than it can when only 
given oracle access to the original program.  In this paper, we 
define and give methodology for a perfectly secure program 
intent obfuscation that is general and practical for bounded 
input-size programs, including those with input/output 
relationships that are easily learned. We also lay foundations for 
how to embed a key securely in a private-key encryption setting 
using such constructions.  
 

Index Terms—Program obfuscation, virtual black box, 
software protection, information security, embedded keys  
 

I. INTRODUCTION 
N their well known result, Barek, Goldreich, et al. [1] state 
that no efficient, general obfuscators exist in the virtual 

black box (VBB) model.  Under VBB, any candidate 
obfuscator O(⋅), when given input program P, must in 
polynomial time produce a semantically equivalent version P’ 
that is roughly similar in efficiency to P. According to VBB, 
any predicate which is polynomially computed from P’ must 
also be polynomially computed given oracle-only access to P. 
Though Barak et al. speculate that obfuscators may exist for 
some classes of programs, Goldwasser and Kalai [2] expand 
the impossibility result by covering cases where an adversary 
has some additional a priori information when given P’. They 
show that many natural classes of functions cannot be 
obfuscated with respect to auxiliary input, both when the 
auxiliary input is dependent of the function being obfuscated 
and even when the auxiliary input is independent of the 
function being obfuscated. 
In this paper, we show how to produce a semantically secure 
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obfuscation for {Pn}n∈N, which is the class of programs with 
input size n.  Unlike other results, the only definition we give 
for Pn is a polynomially-related bound b on the input size such 
that n, b ∈ N and 2n ≤ nb. Given such a bound, we show how 
to produce circuits that are efficient, semantically recoverable, 
and virtual black box protected with regards to the original 
program. The algorithmic complexity of the obfuscation is 
exponential, but, when bounded polynomially, is practical for 
a relevant class of programs—discussed next. 

II. MOTIVATING EXAMPLES 
In order to frame our formulation, we illustrate first the 

class of programs we are interested in obfuscating, which are 
those with small (bounded) input size.  Our construction is not 
comprehensive to all programs because the obfuscator or 
obfuscated circuit is not efficient for all input-size programs; 
yet we present four potential application categories that can 
naturally leverage the strength of our approach, though there 
are many other such potential application categories. 

  
1. Sensor nets. Sensors (depicted in Figure 1) are 

canonically resource constrained and typically process 
small sized input, e.g. 16 bits. A manufacturer could 
create a perfect VBB obfuscation to field such a sensor to 
protect their intellectual property. 

 
2. Location information. Positioning devices utilize 

numerically intensive functions. Mathematical input can 
often be very efficiently represented. Thus, location 
finding or tracking devices are potential perfect 
obfuscation applications. 

 
3. Financial transactions. There is a clear need to protect 

programs that compute financial data. Many important 
financial programs take small mathematical input and, 
thus can be target applications for perfectly secure 
obfuscation. 

 
4. Protecting embedded keys. Our second most important 

contribution is to recognize that the perfect obfuscation 
we introduce can absolutely protect embedded key 
encryption algorithms in executing program code. For an 
application with suitable input size, simply compose the 
code with an appropriate encryption algorithm and apply 
our construction to create the obfuscation. The key (and 
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the seam between the application and the encryption 
algorithm) are provably hidden within the obfuscation. 

 
Take for example a sensor that is deployed in a remote 

operating location as illustrated in Figure 1.  The output of the 
sensor is a broadcast stream of binary digits (64 bits at a time) 
that is carried by some means to a remote processing facility.  
If the sensor were captured by an adversary who had the 
capability to disassemble it and look at its internal structure, it 
may become obvious to the adversary (after some reverse 
hardware engineering process) that the sensor uses 
temperature readings and motion sensor related data. For 
temperature, an input size of 8 bits is used (capturing a range 
from -100O C to 100O C) and, for motion sensor data, 24 bits is 
required.  The software inside the sensor thus takes in 32 bits 
of input and outputs 64 bits of data every time a reading is 

taken (all of which are observable by the adversary).   
We want to protect the intent of the application software 

embedded in the sensor so that the adversary cannot foil the 
detection properties of the sensor or even understand what 
processed information is being relayed back to the processing 
facility based on the input. In other words, we want to ensure 
that both the input/output (black-box) relationships of the 
sensor and the algorithmic information (white-box) of the 
sensor’s embedded circuitry are securely and provably 
protected.  We produce the construction for an obfuscator that 
accomplishes these goals for the embedded program software.  

III. OBFUSCATION SECURITY MODELS 
There are generally two appeals for measuring 

cryptographic security strength: information-theoretic and 
computational-complexity.  The former is strongest and is 
based on whether breaks are possible (unconditionally) while 
the latter is based on whether breaks are feasible. In terms of 
data ciphers, an encryption scheme is considered insecure in 
the information-theoretic sense if the ciphertext contains any 
information about the plaintext. In the computational-
complexity model, it only matters whether information about 
the plaintext that is contained in the ciphertext can be 

efficiently extracted.  
With information-theoretic secrecy, an ideal security model 

is used to show that any candidate security solution is nearly 
as good as the ideal one. This implicit approach is quite 
different from the explicit complexity method which must 
define an adversary task and then show that the task is 
computationally difficult.  Heuristic techniques and some 
computational approaches are deemed a form of “fuzzy” 
security (neither well defined nor precise) because they rely 
on capturing all possible adversarial actions.  Defining such 
actions is difficult and computational/heuristic approaches 
may suffer from a use/break/tweak/use cycle.  These 
foundational differences in defining security apply directly to 
the discussion of how we can securely obfuscate a program.  

For some time, obfuscation researchers have found results 
based on both computational and information-theoretic 
models.  The security characterization of obfuscation has been 
described as NP-easy [3], derivable in limited contexts [4,5], 
and proven to be NP-hard [6,7,8] / PSPACE-hard [9] based on 
specific protection mechanism.  Heuristic approaches include 
techniques based on the hardness of interprocedural analysis 
[8], key-based generation of pseudorandom encrypted cope 
(decrypted just prior to execution) [10], and applying 
cryptographic primitives for constant hiding [4].  Collberg 
defines several complexity metrics that are designed to 
analyze the “hard to understand” quality of practical 
techniques [6]. In [11], Drake characterizes obfuscation as a 
refinement/proof process on data structures (versus 
algorithms). 

Yu and his colleagues have recently found several positive 
results for completely hiding circuit topology in the 
information theoretic sense [12,13].  Canetti [14] and Lynn et 
al. [5] provide formulations for point-function obfuscation 
under the random oracle model while Wee [15] provides a 
secure point-function construction under VBB.  We have 
developed a provably secure black-box program protection 
mechanism in [16] similar to that of Ostrovsky and Skeith’s 
recent work [17] based on public-key obfuscation that 
produces encrypted, recoverable program output.  Other 
research has focused on hardware supported program security 
[18], protection of embedded keys [19], and protecting mobile 
programs [20]. 

The VBB model of measuring obfuscation security 
essentially levies an information theoretic requirement: an 
adversary should learn no more when given the obfuscated 
version (i.e., executable ciphertext) of a program than it 
should when given black-box access to the original 
(executable plaintext) version of the program. Because of the 
impossibility results under VBB, it has been very hard 
(impossible) for any practical implementations of obfuscation 
to demonstrate measurable security properties.   

We illustrate next a generalized obfuscation technique that 
produces perfectly protected circuits from any program with 
bounded (small) input size. The circuits are unconditionally 
and perfectly secure (at least from the “notion” of a virtual 
black box).  Though the process is not efficient for all input-

 
Fig. 1.  Application Example for Bounded Input Size Program. A sensor 
node receives some number of (possibly small) input bits from its 
environment (temperature, motion data, etc.).  The node performs some 
algorithm (that we want to intent protect) and produces an output stream that 
is sent to some (external) processing facility. 
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size programs, we use it nonetheless to illustrate that virtual 
black-box (perfectly secure) protection can be achieved for a 
relevant, real-world class of programs. 

IV. BRIDGING THEORY AND PRACTICE 
Even though Turing machines are not physically 

constructible, they represent the theoretical underpinning of 
computer science; any best-case implementation of a Turing 
machine would require a (bounded) limit on infinitely defined 
tapes. If we desire a true information-theoretic proof that an 
obfuscated program does not leak any information regarding 
the original program, then we must show that the obfuscated 
program behaves exactly (and only) like an oracle for the 
original program would. By definition, an obfuscated circuit 
P’ should not leak any more information about P than the 
oracle of P reveals.   

A. Bounded Input-Size Obfuscation 
Obfuscators that use only oracle-access to a function P, and 

not the original function P itself, have possibility for 
achieving information theoretic security. We state in 
Definition 1 the notion of a generalized program obfuscator 
related only to bounded program input-size. 

 
Definition 1. (bounded input-size program obfuscator)  
An algorithm O is an obfuscator for the class of b-bounded 
input size programs {Pn}n, b∈N, 2

n
≤ n

b, where P ∈ Pn if: 
1. Semantic Equivalence: ∀x, P(x) = P’(x), where 

P’=O(P) 
2. Efficiency: There is a polynomial l(⋅) such that for 

every n, b∈ N where 2n ≤  nb,  and for every P in P, 
|O(P)| ≤ l(|P|) 

3. Perfectly Secure Obfuscation:  For any PPT A, 
there is a PPT simulator S and a negligible function 
α such that for every n, b∈N where 2n ≤  nb, and for 
every P ∈ Pn,  

 

               
)(]1))1(Pr[]1))((Pr[ nSPOA nP α≤=−=

 
 
A function α: N→R+ is negligible if, for any positive 
polynomial p, there exists N∈ N such that α(n) < p(n)-1 for 
any n > N. 
 
In the information theoretic sense, perfectly secure 

obfuscation is defined by information gained by a PPT 
simulator SP that has oracle-only access to some original 
program P.  If a PPT algorithm uses only the information 
gained from an oracle of P to construct a semantically 
equivalent circuit/program P’ for P, then it is impossible for 
any circuit/program P’ created in a such a manner to leak 
more information than what the oracle for P could give. In 
particular, an oracle for P may be simulated by an algorithm 
that utilizes the truth table of P.  The existence of such an 
oracle simulator for P assumes that the possible input range of 

P and its corresponding output can be fully enumerated, 
stored, and accessed.  

We pause to clarify and amplify an oracle’s capability. 
Classically, an oracle answers questions with no notion, 
reference, or intuition on our part as to how it knows the 
answer; we universally accept that the oracle’s answers are 
correct. We utilize truth tables in our arguments because they 
capture the oracle’s capability for answering function queries, 
since each answer, essentially, fills in a space in the function’s 
truth table.  

In their argument formulation, Barak et al. acknowledge a 
valid obfuscation exists for circuits in the following manner:  

 
“Note that if we had not restricted the size of the 
obfuscated circuit O(C), then the (exponential 
size) list of all the values of the circuit would be 
a valid obfuscation (provided we allow S 
running time poly(|O(C)|) rather than 
poly(|C|)).” [1] 
 

  We explore this statement and define explicitly the 
constructions related to this possibility. The VBB 
impossibility proofs in general deal with (contrived) functions 
where the input size is too large for practical truth table 
enumeration—therefore a simulator with oracle access to an 
original program P (defined as SP) can do no better than 
guessing based on oracle-queries.  We consider instead the 
family of functions whose input size is small and therefore 
whose input/output behavior is not prohibitive for a simulator 
to enumerate.   

Barak et al. also state that the foundation of (all) of their 
proofs derive from the “fundamental difference between 
getting black-box access to a function and getting a program 
that computes it, no matter how obfuscated” [1].  They go on 
to state that this difference disappears if the function is 
learnable completely from oracle (black-box) queries. Our 
interest in bounded input-size programs is that their truth 
tables can be obtained efficiently when they have a 
sufficiently limited input size. 

Some functions are easily learnable in that they can be 
learned from partial truth tables. Our results address functions 
whose truth tables can be completely constructed in 
polynomial time from oracle access, and point out that even 
for functions whose complexity grows exponentially, truth 
table construction complexity simulates polynomial growth 
for small input sizes. This function class provides the 
opportunity to observe provably VBB protected circuit 
implementations.  

A natural question to ask is: “How (can) protecting a 
circuit/program whose truth table can be computed provide 
security?” As we mention in our review of obfuscation 
security models, the value of an obfuscation model where the 
obfuscated version of a program/circuit is not semantically 
equivalent to the original program/circuit has already been 
demonstrated.  In our ideal construction (under Theorem 3), 
the obfuscated program’s truth table is black box protected 
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and, thus, does not reveal anything about I/O-based intent. 
Moreover, the canonical circuit construction described in 
Theorem 1, when used as an obfuscation technique, reveals 
nothing about the original circuit structure, thus providing 
perfect white box protection. 
 

Theorem 1: Perfectly secure obfuscators exist for b-
bounded input-size programs (under Definition. 1). 
 
Proof: Our proof is by construction. We give a three step 
obfuscator O(P) that takes any executable program P, generates 
the truth table from oracle access to P, and applies a Boolean 
canonical reduction on the truth table to produce a circuit that is 
semantically equivalent to P. Assume n is the input size of P and 
let 2n ≤ nb, for some user specified b.  
 
Then: O is a b-bounded input-size program obfuscator for the 
class of programs {Pn}n,b∈N, 2

n
≤ n

b, for any P ∈ Pn, under the 
following construction: 
 
Step 1.  Using P, acquire or create SP as an efficient oracle 
emulation of P. 
Step 2.  Generate the truth table for P, T(P), by running SP on all 
2n inputs of P. Assuming P: {0,1}n → {0,1}m , T(P) is the m⋅2n size 
matrix of input/output pairs obtained in the following manner:  ∀x, 
[x,y] = [x, SP(x)], where SP is a PPT simulator with oracle access to 
P. 
Step 3.  Create circuit P’ by applying the algorithm for canonical 
complete-sum of products [21,22] to T(P).  P’=∑i=1,…,n πi, is in 
disjunctive normal form (DNF) where each product πi is a conjunct 
of literals and each literal is either an input variable xj or its 
negation x’j (1 ≤ j ≤ n). Minimize P’ via heuristic minimal-sum of 
products algorithm such as Blake’s reduction based on Shannon’s 
recursive expansion.  
 

1. P’ is perfectly secure with respect to P. Since P’ = O(P), 
T(P) is fully derivable given P assuming some 
polynomially bound b on input size n.  Given bounded 
size, the following relationship holds between any PPT 
simulator SP and obfuscator O. Both can derive T(P) and 
thus a canonical circuit for P in polynomially bounded 
time.  

 

             
)(]1))1(Pr[]1))((Pr[ nSPOA nP α≤=−=

,   
                                         for bounded n. 

 
2. For ∀x, P(x) = P’(x). By construction, P' precisely 

implements T(P). 
3. There is a polynomial l(⋅) such that for every n,b∈N 

where 2n ≤ nb,  and for every P in P, |O(P)| ≤ l(|P|).  In the 
worst case, a complete sum-of-products expansion is 
composed of m outputs consisting of up to 2n minterms 
composed of up to n-1 products (AND) and up to 2n-1 
summations (OR). The maximum size, m2n(n-1)(2n-1), is 
O(2n) while the minimal possible size is Ω(m)—
representing where each output is constant 0. By 
bounding the input size of program P with b, the size for 
the complete sum of products expansion circuit becomes 
O(nb).  We would not (in practice), use the complete sum 

of products expansion because much more efficient 
representations are possible.  From the security aspect 
alone, however, any more-efficient derivation of the 
complete sum of products circuit retains the perfectly 
secure obfuscation (hiding) property.   

4. The minimal SOP expression of P’ is polynomially 
equivalent in input-size to the original P related to some 
polynomial bound b, because n = |xP| and |P’|  ≤ nb. 

 
We point out that obfuscators constructed under Theorem 1 

produce perfectly white-box protected circuits (in the 
information theoretic sense) from bounded input-size 
programs, but assume nothing about the hardness or difficulty 
of learning the original program P.  If the input/output of P 
(and thus any semantically equivalent version of P such as 
P’), reveals the intent or function of P, then no degree of 
white-box hiding can prevent the adversary from learning the 
function of P from the input/output relationships of P’.  The 
truth-table derived construction of Theorem 1 perfectly hides 
only the algorithmic construction of P—and nothing more.  

B. Protecting Embedded Private-Key Ciphers 
In the VBB constructions, P is assumed to be a function 

whose input/output behavior is hard to learn to begin with. 
However, constructions under Theorem 1 point out two useful 
practical realizations when used in context to hard-to-learn, 
one-way, pseudorandom functions: truth-table-based circuit 
derivations provide a method to hide embedded encryption 
keys programmatically and perfectly secure obfuscated 
private-key encryption schemes are possible where the 
(unpadded) input size (of the plaintext) is bounded.  

A block cipher is a function E: {0,1}k x {0,1}m → {0,1}m that 
take a k-bit key and an m-bit (block length) plaintext input and 
returns an m-bit ciphertext string. The inverse function D: 
{0,1}k x {0,1}m → {0,1}m takes the k-bit key and an m-bit 
ciphertext string and returns an original m-bit plaintext string.  
We let EK(M) denote the encryption of message M∈ {0,1}m 
with a specific key K ∈ {0,1}k and let DK(C) denote the 
decryption (inverse encryption) of message C∈{0,1}m with a 
specific key K ∈ {0,1}k. We assume that any block cipher E of 
interest to us is a strongly pseudorandom function that is a 
permutation on {0,1}m, as defined for example by Goldreich in 
his textbook [23].   

Several block-cipher-based, private-key encryption 
schemes exist with pseudorandom properties.  DES with fixed 
message size has been characterized as a candidate one-way 
function (assuming one-way functions exist) among other 
algorithms such as RSA. The hardness of key recovery and 
the one-way properties of ciphers such as DES are well 
established and pseudorandom properties of the DES family is 
discussed by Bellare et al. in [24] and Goldreich in [23]. Our 
interest in the DES family of functions, including variants 
such as 3-DES, is the comparatively small block size of the 
plaintext (64 bits).  Though the virtual key size of 3-DES is 
larger than 56 bits, we focus on DES nonetheless with its 
standard 56-bit key space.  

In Definition 2, we specify the requirements for an 
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obfuscator of block-based private-key encryption schemes 
(such as DES), that provides a semantically secure hiding of 
an encryption key. In essence, the obfuscator O(K,E), under 
this definition, takes a private-key K and block encryption 
algorithm E(K,·) and returns EK(·) such that no key-recovery 
attack can reveal the key K based on analysis of the source 
code/gate structure of EK. Theorem 2 now gives the 
formulation for obfuscating a key-embedded block cipher 
under the construction of Theorem 1.   

 
Definition 2. (private-key block encryption program 
obfuscator) The tuple of PPT algorithms (KG,E,D,O) 
enforces perfectly secure obfuscation in the private-key 
setting with security parameter k and block-size m for the 
class of programs {Ek,m} where E ∈ Ek.m if: 

 
1. Private Key Encryption: (KG,E,D) defines a 

pseudorandom private-key block encryption scheme with 
block-size m and security parameter k: 

KG: a probabilistic algorithm which picks K (on input 1k, produces 
key K); assume KG never produces “weak” keys 

E: {0,1}k x {0,1}m → {0,1}m, on input K ∈ {0,1}k and plaintext 
message M ∈ {0,1}m, produces ciphertext C ∈ {0,1}m 

D: {0,1}k x {0,1}m → {0,1}m, for all )1( kR KGK ⎯⎯← and M ∈ 
{0,1}m, DK(EK(M)) =M,  

2.  Semantic Equivalence:  Given )1( kR KGK ⎯⎯←  and 
program E ∈ Ek.m,∀x, E(K,x) = E’(x), where E’ = O(K,E) 
= EK(·)  

3.  Efficiency: There is a polynomial l(⋅) for every E in Ek.m 
|O(K,E)| ≤ l(|E|) 

4.  Perfectly Secure Obfuscation:  For any PPT A, there is 
a PPT simulator S and a negligible function α such that 
for every for every E ∈ Ek.m and for every 

)1( kR KGK ⎯⎯←  

                  )(]1))1(,Pr[]1)),((,Pr[ nSEEKOAE mEK α≤=−=  
 

We assume any distinguisher does not have access to the 
private key K but has knowledge of the encryption 
program E. 

 
Theorem 2: Perfectly secure obfuscators exist for b-
bounded input-size private-key block encryption programs. 
 
Proof: Our proof is by construction. We give a three step 

obfuscator O(·) that takes )1( kR KGK ⎯⎯←  and block-cipher program 
E with block-size m and key-size k, generates the truth table from 
oracle access to E(K, ·), and applies a Boolean canonical reduction 
on the truth table to produce a circuit E’ that is semantically 
equivalent to E(K, ·). 
 
Let circuit E’ = O(TEK)= O(K,E) be an obfuscation of the 
encryption program E with embedded key K (i.e. E' retains the 
functionality of E(K,·)) where TEK is the truth table of E(K, ·). 
Assume m is the input size of E and n is the virtual (unpadded) 

input size of the plaintext where n ≤ m and let 2n ≤ nb, for some 
user specified b.  Let TEK be generated through the PPT simulator 
SE.  
 
Then: O is a b-bounded input-size private-key block encryption 
program obfuscator for the class of programs {En}n,k,b∈N, n≤m, 2

n
≤ n

b, 
for any E ∈ Ek.m 

Given E ∈ Ek,m and )1( kR KGK ⎯⎯←  
Step 1.  Acquire an efficient implementation of E, SE, to use as 
oracle emulation.  
Step 2.  Generate the truth table for E(K,·), TEK by running SE on 
all 2n inputs of E, where n is related to the polynomial efficiency 
bound b. Where n < m, pad each input with m-n zeros. 
Step 3.  Create circuit E’ by applying the algorithm for canonical 
complete-sum of products to TEK.  E’=∑i=1,…,n πi, is in disjunctive 
normal form (DNF) where each product πi is a conjunct of literals 
and each literal is either an input variables xj or its negation x’j (1 ≤ 
j ≤ n). Minimize E’ via minimal-sum of products algorithm such as 
Blake’s reduction based on Shannon’s recursive expansion.  
 
From Theorem 1, E’ has the same characteristics based on its 
construction and meets requirements for semantic equivalence, 
efficiency, and perfectly secure obfuscation. 
 
We distinguish between the block-size of cipher E which is 

m and our desired (bounded) input-size n.  We establish that n 
≤ m and 2n ≤ nb for some user specified b.  Where n = m, no 
padding of the input is necessary for E(K,M). Where n = m is 
too large for a user chosen bound b (meaning there are not 
enough computational resources available to achieve truth 
table elaboration or the reduced sum-of-products circuit 
derivation), an input size reduction is necessarily in order to 
meet the efficiency requirements for a polynomial bounded 
circuit size on E’ or polynomial time speed for O. Where n < 
m, we must choose whether to pad with m-n zeros or to pad 
with a (randomly) chosen m-n bit string.  We assume padding 
with 0 for simplicity at this point but point out that our 
plaintext message space is now {0,1}n as opposed to{0,1}m.  
The security ramifications where the adversary knows that a 
(possibly) reduced (virtual) block size is being used is a 
separate but related discussion to whether the adversary can 
recover the key K when given the source code (gate structure) 
of E’. 

Consider, for example, that we could easily encrypt the 
output of our sensor from Figure 1 using an embedded-key 
DES program because the sensor outputs 64 bits of data at a 
time (which matches the block input size of DES). The 
encrypted computational result DESK(sensor(x)) could then be 
sent back to the processing facility, decrypted using the 
private key K, and then analyzed.  The only stipulation given 
under Theorem 2 is that we have computational resources 
related to the bound b such that 232 < 32b.  The primary 
limiting factor is the input size of the sensor since the size of 
circuit is only polynomially related to the number of outputs 
(which would be a factor of the encryption algorithm E).  If 
there are adequate computational resources to accomplish the 
truth table enumeration for the 32-bit input/64-bit output 
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matrix, then circuit E’ can be constructed and a perfectly 
secure key-embedded circuit can be used in the sensor.  

 Assume that the output of the sensor described in Figure 1 
were 32 bits instead of 64.  We are confronted with the fact 
that only 32 bits (not the total 64 bit block size) of DES are in 
view.  For a DES program that takes messages that are 32 bits 
long, the job of the adversary is to find the one truth table out 
of the approximately 256 possible truth tables (excluding those 
based on weak keys) that is based upon the specific K that is 
embedded in E’.  For our specific sensor example, each truth 
table is a possibly 232 enumeration (versus a 264 enumeration) 
of entries corresponding to each message/ciphertext pair.   

The obfuscators defined under Theorem 2 need only 
produce one of these truth tables in order to embed the key 
with perfect semantic protection in the circuit E’. The 
adversary (on the other hand), must enumerate up to 256 such 
truth tables in order to use the circuit E’ to pinpoint the 
particular key K embedded within.  Because of the 
construction process for circuit E’, which is based only on the 
input/output relationships of an embedded-key encryption 
operation, the adversary cannot discover the key K by 
examination of the actual gates of circuit E’.  In fact, the gates 
of E’ only yields semantic information concerning the 
input/output behavior of EK, and nothing more. The adversary 
can do no more than observe input/output pairs which are 
obtained from execution of E’ itself.  

We pause here to mention that an adversary that has 
possession of an (embedded) key-based cipher and knowledge 
of the underlying cipher/algorithm can actually pinpoint the 
particular key based on input/output pairs.  If the key-space is 
within reasonable computational range, the adversary need 
only enumerate all keys and run a single input into the 
(known) encryption algorithm to produce a corresponding 
ciphertext output. This pair may then be compare with the 
input/output of the embedded-key cipher.  Because of the one-
way nature of the cipher, the plaintext/ciphertext pairs for all 
possible keys would uniquely pinpoint the embedded key—
assuming the adversary can enumerate all key space 
possibilities.  In the case of embedded-key ciphers, the 
adversary can perform a wide range of cryptanalysis attacks 
not possible when they only have possession of ciphertext or 
plaintext alone.  

Given a possibly reduced message space for DES, the 
security of the circuit E’ is certainly related more to the key-
space of DES than the reduced message space 2n versus 2m. 
We can leverage this observation and replace the DES56 
program with 3DES56, AES128, AES512, RSA512, RSA1024, or 
even an RSA2048 variant.  In each replacement just mentioned, 
the efficiency of the obfuscator under Theorem 2 given a 
bounded input size (32-bits in our example) increases only in 
relationship to the additional running time incurred by the 
oracle for each prospective encryption algorithm to generate 
one truth table.  The circuit size of E’ does not vary based on 
the encryption algorithm chosen other than a linear variation 
based on additional output bits (64-bits versus 128, 512, 1024, 
etc.).   

We can use public key encryption algorithms under this 
same construction with both public and private keys held 
private.  This fits especially well with the computational 
model of a remote processing sensor data because the 
execution environment of the program (the sensor) does not 
require decryption of the data it is processing.  We can also 
introduce randomness or variation into the way in which we 
construct the cipher itself; we may consider a key-based 
method of concatenating ciphers with other ciphers as a viable 
alternative  

C. Generalized Program Intent Protection 
Consider now a sensor that takes in 32 bits of data and 

produces 32 bits of input: an adversary may observe much less 
than 232 input/output pairs of the sensor in order to adequately 
determine the programmatic intent of the sensor and therefore 
find an (effective) way to subvert it. Theorem 3 provides a 
basis to consider any bounded input-size program P that has 
(easily) learnable input/output patterns versus one-way 
relationships (like DES56) that are assumed provably hard to 
learn.  Figure 2 gives a notional/ specific view of this 

construction using a program P and a 3DES encryption 
algorithm.   

In this construction, a circuit P’ is constructed from the 
catenation of the output of program P with a data encryption 
cipher E (which is a 3DES cipher that uses 2 keys in an 
encrypt-decrypt-encrypt relationship).  As illustrated, P is a 
function P: {0,1}|xP| → {0,1}|yP| and E is a function 3DES K1,K2: 
{0,1}64 → {0,1}64 with two embedded keys.  We assume the 
output size of P, |yP|, is less than or equal to the input size of 
E (which for 3DES is 64 bits).  The circuit P’ is a 
concatenation of P and E that then becomes a virtual black 
box, such that for all input x, P’(x) = 3DESK1,K2(P(x)). 

We note that Ostravsky and Skeith define similar public key 
encryption-program-padding obfuscators in [17] with follow 
on work by Adida and Wikström [25] that implements such 
constructions in obfuscated mixnet programs. Our own 
semantic transformation obfuscation technique described in 
[16], which precedes these results, leaves open the possibility 

 

Circuit P’ 

P” =P | E 

 
Fig. 2.  Fully Generalized Bounded Input-Size Program Obfuscation. By 
composing program P with a (strong) data encryption cipher E. for all x, 
P”(x) = E(P(x),K). By generating the truth table of P” for all inputs x, we 
produce circuit P’ by applying standard Sum-of-Products derivation and 
simplification.  P’ is provably black-box and white-box intent protected 
(VBB) with respect to P.  
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for either a symmetric or asymmetric encryption algorithm to 
effectively mask the original input/output patterns of an 
original program via concatenation of program output.  These 
techniques of course rely on the underlying semantic security 
properties of the encryption algorithm that is used.  We adapt 
such padding schemes to our construction to provide fully 
general bounded input-size program protection and prove such 
obfuscators exist for them in Theorem 3. We provide now a 
definition and theoretical construction that would take any 
bounded-input size program P that is (easily) learnable and 
concatenate the output of that program with an embedded-key 
strongly pseudorandom encryption algorithm. For brevity, we 
only specify the symmetric/private-key block cipher variant 
and follow the construction for obfuscated mixnets given in 
[25]. 

 
For notational purposes, let P|E refer to the concatenation 
of program P with the program E such that (P|EK)(x) = 
EK(P(x)), for all x. Let P be defined as function P:{0,1}n → 
{0,1}|yP| and E: {0,1}k x{0,1}m → {0,1}m.  Let P|EK for 
encryption algorithm E with embedded key K be defined as 
P|EK: {0,1}n → {0,1}m. 
 
Definition 3. (general obfuscator for easily learned 
programs with bounded input-size) For PPT algorithms 
KG,E,D,O, obfuscator O provides perfectly secure 
obfuscation for the class of b-bounded programs{Pn}n,k,b∈N, 

n<m, 2
n
≤ n

b where P ∈ Pn if: 
 

1. Private Key Encryption: (KG,E,D) defines a 
pseudorandom private-key block encryption scheme 
with block-size m and security parameter k under 
Definition 2. 

2. Semantic Equivalence:  Given )1( kR KGK ⎯⎯←  and 
program P∈ Pn,∀x, P(x) = DK(P’(x)) where P’= 
O(K,P,E). Furthermore,∀x, P’(x) = EK(P(x)).  

3. Generality: (|xP| = n) ≤  m, for all E ∈ Ek,m under 
Definition 2  

4. Efficiency: There is a polynomial l(⋅) for every P in 
Pn, |O(K,P,E)| ≤ l(|P|) 

5. Perfectly Secure Obfuscation:  For any PPT A, 
there is a PPT simulator S and a negligible function 
α such that for every n,b∈N where 2n ≤  nb, and for 

every P ∈ Pn and for every )1( kR KGK ⎯⎯←  

               )(]1))1(,Pr[]1)),,((,Pr[ nSEEPKOAE nEK α≤=−=  
 
Theorem 3: Perfectly secure obfuscators exist for b-
bounded input-size programs with easily learned I/O 
relationships. 
 
Proof: Our proof is by construction. We give a three-step 

obfuscator O(·) that takes as input )1( kR KGK ⎯⎯← , a block-cipher 
encryption program E with block-size m and key-size/security 
parameter k, and a b-bounded program P with input size n and 

output size |yP| ≤ m, and where 2n ≤  nb, for some user defined b. 
Let circuit P’ = O(K,P,E) be an obfuscation of any general 
program P with these constraints such that ∀x, P(x) = DK(P’(x)) 
and, ∀x, P’(x) = EK(P(x)).  
 
Construct P’ = O(K,P,E) in the following manner: 
Step 1. Given )1( kR KGK ⎯⎯← , let P” = P | EK. Acquire an efficient 
implementation of ORACLEP” to use as oracle emulation. 
Step 2. Generate the truth table T(P”) by executing ORACLEP”(x) 
= E(K,P(x)) for all 2n possible inputs x of P.  Where |yP| < m, pad 
the output of P(x) with m - |yP| zeros.  
Step 3.  Create circuit P’ by applying the algorithm for canonical 
complete-sum of products to TP”, as defined in Theorem 1.  
Minimize P’ via standard heuristic 2-level reduction techniques.  
 
Then:  

1. E is hard to learn and therefore P”/P’ are hard to learn from 
black-box observation alone. However, recovery of any 
intended output of P (which is easy to learn) is possible because 
∀x, P(x) = DK(P’(x)) = DK(EK(P(x)).  Thus, the semantic 
equivalence between P’ and P is established.  
2. P’ is a perfectly secure obfuscation with respect to P and the 
embedded-key encryption algorithm EK because P’ is produced 
only from oracle access to P” = P | EK. 
3. |P’| is poly-(n) given bound b. 
4. O is a general, efficient obfuscator for any program P that 
runs in poly-(n) time, given a bound b related to the input size of 
P.  P’ is roughly equivalent in efficiency to P. The minimal SOP 
expression of P’ is polynomially equivalent in size to P related 
to some bound b, because |P’| ≤ nb.  Note that the size 
characteristics of P’ are related to the input size of P and not the 
possible input size of E.  

D. Specifying Bounds 
The generalized protection technique described in Theorem 

3 depends clearly on the user-defined bound on program input 
size. The parameter b is clearly based on computational 
resources available to the user and reflects an acceptable limit 
on exponential growth.  For truth table derivation and sum-of-
product derivation, the storage available for the truth table 
T(P”) and the size of the resulting circuit P’ become the 
primary barometer for determining bound b.   An input size 
n=32 bits reflects a bounded input parameter b=7, since 2n ≤  
nb, 232 ≤  327.  For a nominal desktop PC with 512 MB of 
memory, 60 GB of disk space, and a medium sized process 
(~1GhZ class),  we have found n=32 (bits) to be a reasonable 
program input size for truth table derivation / canonical circuit 
creation within a day. To illustrate the magnitude of resources 
(time and space) required for various input sizes, Table 1 
shows the relationship between the computational bound 
parameter b and input size (n).  We expect with adequate 
resources, input sizes of 128-256 could be realized for specific 
applications of interest. 

V. CONCLUSIONS 
The techniques demonstrated in this paper illustrate that any 

program, with small input size, is a candidate for practical and 
provably secure obfuscation.  They also reaffirm a primary 
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negative result under VBB that no general, secure, efficient 
obfuscator exists for all programs (any input size).  However, 
the primary contribution we point out is that there are relevant 
program classes that can enjoy secure obfuscation under VBB. 

As Barak states in [26] concerning the existence of 
unobfuscatable function families, “We believe the existence of 
such functions shows that the virtual black box paradigm for 
obfuscators is inherently flawed.”  We believe also that a 
security analysis model that characterizes practical 
obfuscators is needed; particularly, a model that is not 
inherently flawed and evaluates the relative strength of current 
techniques that are predominantly based on confusion. The 
model would of course acknowledge that (absolute or 
unconditional) information theoretic security of the original 
source code under VBB for general programs is not possible.  
Such a better model has been elusive to realize, but we 
address alternate possibilities for measuring obfuscation 
strength in other work [27, 28].    

In this work, we establish the possibility of generalized, 
perfect obfuscation security in the information theoretic sense 
for a limited, but useful and relevant, class of programs. More 
importantly, we lay the foundations for how to embed a key 
securely in a private-key encryption setting. Such 
constructions can be used as a basis to securely transform a 
private-key system into a public-key system—a long standing 
problem in computer science. 
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TABLE I 

RELATIONSHIP BETWEEN (PROGRAM) INPUT SIZE  
AND (COMPUTATIONAL) USER BOUND 

Input Size 
n 

Bound 
b 2n nb 

16 4 65,536 65,536 
24 6 1.67 x 107 1.91 x 108 
32 7 4.29 x 109 3.44 x 1010 
56 10 7.21 x 1016 3.03 x 1017 
64 11 1.84 x 1019 7.38 x 1019 

128 19 3.40 x 1038 1.09 x 1040 
256 32 1.16 x 1077 1.16 x 1077 
512 57 1.34 x 10154 2.68 x 10154 
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