A Java Based Component Identification Tool for Measuring
the Strength of Circuit Protections

[Extended Abstract]

James D. Parham
Air Force Institute of
Technology
Wright-Patterson AFB, OH
) 45433-7765]
james.parham.2@us.af.mil

J. Todd McDonald
Air Force Institute of
Technology
Wright-Patterson AFB, OH

 45433-7765
jmcdonal@afit.edu

Michael R. Grimaila
Air Force Institute of
Technology
Wright-Patterson AFB, OH
45433-7765
mgrimail@afit.edu

Yong C. Kim
Air Force Institute of
Technology
Wright-Patterson AFB, OH
45433-7765
ykim@afit.edu

ABSTRACT

Protecting circuitry from reverse engineering is extremely
important for the protection of intellectual property and
critical technologies. A failure to adequately mitigate re-
verse engineering risks can result in significant consequences.
In commercial environments, the consequences include loss
of revenue resulting from the removal of content access re-
strictions, creation of unlicensed copies of a circuit, and in-
tellectual property theft. In military environments, con-
sequences include an adversary’s ability to gain valuable
knowledge about the structure, function, and operation of
the system enabling them to develop countermeasures to de-
feat or corrupt the system’s intended purpose. When critical
systems are compromised, organizations may be required to
spend millions of dollars and countless labor hours making
changes in the system and redesigning new protection cir-
cuitry. While there are multiple protection algorithms and
schemes which claim to provide protection against reverse
engineering, little research exists on developing methods to
measure the effectiveness of protections.

*Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. CSIIRW ’10,
April 21-23, Oak Ridge, Tennessee, USA Copyright (©2010
ACM 978-1-4503-0017-9 ... $5.00

Component identification is an essential step of the reverse
engineering process of circuits which are increasingly being
embedded in modern systems. The task of component iden-
tification is not trivial and requires significant effort even for
relatively small circuits. For this reason, computer tools are
often employed to make the analysis of larger circuits pos-
sible. In this paper, we discuss the development and imple-
mentation of a Java based tool that can be used to identify
components in combinational circuits. The use of a com-
ponent identification tool provides metrics that can be used
to differentially evaluate the“strength” of protections within
circuits. We introduce the foundational candidate enumer-
ation algorithm, explain the additional techniques required
for identifying components in large Boolean circuits, and
demonstrate the utility of the method through the analysis
of multiple combinational circuits.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-aided design
(CAD)

General Terms
Component identification, Circuit protection, Reverse engi-
neering

1. INTRODUCTION

Reverse Engineering (RE) is the scientific process of devel-
oping an understanding of the underlying technical princi-
ples of a system through analysis of its structure, function
and operation. RE is conducted for a wide variety of le-
gitimate purposes (e.g., modeling, identify opportunities for
cost reduction, recreate lost technical documentation, se-
curity analysis, education) and illegitimate purposes (e.g.,
theft of intellectual property, circumventing content protec-
tion, creating unlicensed copies, espionage). Protecting cir-
cuitry reverse engineering is extremely important in both
commercial and military environments. While the conse-

Figure 1: Exposed transistors of the Mifare RFID
are shown on the left and results after gate identifi-
cation are shown on the right [5].

quences resulting from failing to protect from RE in commer-
cial environments are typically characterized in terms of the
loss of revenue, in military environments the consequences
can be much higher including loss of critical resources and
the loss of life.

Without implementing some form of protection, an adver-
sary may easily gain access to sensitive information con-
tained within the circuit with disasterous results. For ex-
ample, the U.S. National Security Agency has authorized
the Advanced Encryption Standard (AES) for encrypting
classified information on Unmanned Aerial Systems (UAS).
Without providing protection to AES circuitry, adversaries
could possibly obtain secret keys enabling interception of the
data link to substitute their own video feeds or take control
of a UAS [1].

Billions of dollars are spent each year developing technolo-
gies. The U.S. Department of Defense Fiscal Year 2009 bud-
get request for procurement research and development was
in excess of $183 billion for modernizing and meeting future
threats [6]. Adversaries gain access to technologies faster
and cheaper when they reverse engineer system circuitry.

Component identification is one computer aided method used
by reverse engineers for discovering key circuit elements [3].
Nohl et al. used this technique when revealing the crypto-
graphic cypher of the Mifare Classic Radio Frequency Iden-
tification (RFID) tag. They first exposed circuit transis-
tors enabling identification of gate structures and the con-
nections between them. Figure 1 shows a small section of
exposed transistors and the results of gate identification.
Then they identified the area of the circuit chip contain-
ing cryptographic components. Finally, they discovered the
cryptographic keys making it possible to access the Dutch
transit system where the use of these cards was intended.
When they testified before the Dutch government detailing
their accomplishments, approximately $2 billion had been
invested in the ticketing system [5].

Our previous research focused on creating random circuit
variants and used randomness as a proxy for an obfusca-
tion/protection metric [4]. However, we have recently started
to explore the the use of the operational parameters (e.g.,

runtime, memory utilization, convergence) of component iden-
tification tools as measures of the effectiveness of circuit pro-
tection in combinational circuits. In pursuit of these objec-
tives, we chose to implement a Java based component iden-
tification tool. In this paper, we present the development of
a component identification tool, discuss foundational algo-
rithms for candidate component identification, introduce a
method of candidate equivalence checking, and demonstrate
the utility of the method through the analysis of multiple
versions of a 16-bit multiplier.

2. MODELING BOOLEAN CIRCUITS

We model combinational logic at the gate level as Boolean
circuits using Directed Acyclic Graphs (DAG) where each
vertex represents a logic gate and each edge represents the
connection between them. Directed graphs are used since
flow occurs only in one direction from the output of a gate to
the input of one or more gates. Shaped vertices allow visual
identification of gate types as well as inputs and outputs.
Figure 2 shows an example circuit graph for a five input two
output circuit.

Figure 2: An five input two output example circuit
graph.

3. CANDIDATE ENUMERATION

A fully connected graph has n! subgraphs where n is the
number of vertices. A fully connected graph is highly un-
likely, but serves as an upper bound for the number of possi-
ble sub circuits [7]. This shows that even small circuit graphs
contain an intractable number of subgraphs. White [8] de-
tails a candidate subcircuit enumeration algorithm with run-
time O(n®). Since no source code implementation of the al-
gorithm was available, we implemented their algorithm in
Java. The component candidate enumeration algorithm is
based upon three rules:

1. Unique Enumeration - No subgraph is created more
than once.

2. Fully Specified Candidate - A subgraph must con-
tain either all or no predecessors for every vertex in
the graph.

3. Fully Contained Candidate - A subgraph must con-
tain either all or no successors for every vertex in the
graph.

When rule two and rule three are satisfied the candidate sub-
circuit is considered fully contained and is valid for equiva-
lence checking. In Figure 3 we show examples of rule two and
rule three violations. Vertex five violates rule two because
only one of its predecessors, vertex four, is contained in the
subgraph. Vertex four violates rule three because only one
of its successors, vertex five, is contained in the subgraph.

Figure 3: The highlighted subgraph contains two
vertices each violating a single rule. Vertex five vi-
olates rule two and vertex four violates rule three.

4. EQUIVALENCE CHECKING

When our tool identifies fully contained candidates, we per-
form equivalence checking before accepting it as a valid cir-
cuit component. We accomplish this with truth table anal-
ysis between the candidate component and a known library
component. Our first check is the input and output (I/O)
space of the candidate. If a known library module exists
with the same 1/O space we perform the truth table analy-
sis. If no library module exists with matching I/O space we
discard the candidate. I/O ordering effects the analysis so
we permute /O order comparing all possible combinations.
Equivalence checking has a runtime of O(n!m!) where n is
the number of inputs and m is the number of outputs. We
limit equivalence checking to candidates not exceeding eight
inputs or eight outputs because of the runtime, memory,
and performance limitations. For best component identifi-
cation performance, the known library should contain only
components of interest during candidate identification.

5. IDENTIFICATION ALGORITHM

Our component identification tool utilizes a multipass pro-
cess. A circuit of interest, described in Bench file format [2],
is supplied to the identification tool. Searching begins with
enumeration of candidate components starting with com-
ponents of larger size since larger components may be com-
posed of smaller ones. When the tool identifies a candidate it
is logged until the pass completes. We then remove all iden-
tified components from the circuit of interest and repeat the
search. This process continues until zero components are
identified in a single pass. Figure 4 shows a process flow
chart.

6. TEST CIRCUITS
Our primary circuit of interest is the ISCAS-85 C6288 16-bit
multiplier [2]. We consider this type of circuit one in which

Step0
Circuitin Bench
format

!

Step 1:
Identify
Candidates

|

K Step 2:
L!'nbnwn —>| Compare
ibrary Candidate

Components
Identified?

Identified
Components

Reduce
Circuit

Figure 4: Component identification process.

protection is most difficult because of its repeated gate struc-
ture. We created other test circuits from our own custom
component library. These components are random circuits
with input and output size of six or less. This I/O space is
chosen for making equivalence checking feasible. Our largest
component is a six input four output circuit containing 145
gates. With this component, the worst case number of com-
parisons for equivalence is 6!4! = 17280 comparisons.

The 16-bit multiplier contains 240 adder components, 224
full adders and 16 half adders. Full adders are three input
two output component containing 12 gates and half adders
are two input 2 output components with 11 gates. Using
custom components we constructed a large I/O space circuit.
The circuit has 70 inputs 28 outputs and contains 1374 gates.
Figure 5 shows a high level diagram of the large test circuit.
The diagram provides a topological view where inputs are
at the top and outputs at the bottom of the diagram. Each
box shown is a custom random component. Note that text
in this figure are not important to read.

7
\n/ \ m/

63103 | | caatas

Figure 5: Largest custom test circuit containing 26
custom components.

7. |IDENTIFICATION RESULTS

We found the tool best suited for “independent” compo-
nents. We consider components “dependent” when a single
gate supplies input to more than one component. Figure
6 shows a circuit with three custom components. Compo-
nents B and C share an input from component A. This
shared input makes component B and C dependent result-
ing in identification failure. Components in our test circuits
are independent of each other.

Because we know the composition of each test circuit we
used a specified search array to decrease overall search time.
In C6288, we use the search set {12,11} while in the larger
custom circuit we use the set {145,103,76,41,27,18,11,9}.
In both circuits 100% of components are identified. Our
tool needs a single pass taking 1.167 minutes to identify all
240 adder components. The larger circuit requires multi-
ple passes for 100% identification. Our tool identifies all 26
components after four passes in 40.58 minutes.

i

A

B c
Figure 6: A three component circuit where identifi-
cation fails from dependent components B and C.

We use a larger search set when using our tool for measuring
the strength of circuit protection. This is more realistic to
the methods a reverse engineer may use since they would not
have full knowledge of circuit composition. We created three
protected variants of C6288 and searched for adder compo-
nents using our component identification tool. A search set
of {25,24,...,11} was used. Table 1 shows the results of
circuit protection measurements.

Table 1: Results of component identification on an
unprotected C6288 and two protected variants.

Circuit Gate Size | Components | Identification
Identified Time
Unprotected 2448 100% 18.8 minutes
Variant One 2468 92% 18.9 minutes
Variant Two 5784 .02% 44.5 minutes
Variant Three | 7052 0 54.3 minutes

8. CONCLUSIONS

Component identification is one step of the reverse engi-
neering process. Up until now, no identification tool existed
in our protection toolkit. Using the subcircuit enumera-
tion algorithm developed by [8], we implemented our own

component identification tool. The tool is limited to cir-
cuits containing independent components and is not efficient
when checking equivalence of circuit with large I/O space.
However, we have shown computer tools will aid reverse en-
gineering for identifying components of larger circuits. Our
component identification tool has been used for measuring
effectiveness of current protection algorithms and for devel-
oping algorithms which defeat component identification all
together.

9. ACKNOWLEDGMENTS

This work was supported by a research grant from the Air
Force Office of Scientific Research. The authors would like
to thank Dr. Travis Doom at Wright State University for
sharing references and discussing his work on component
identification with us.

10. DISCLAIMER

The views expressed in this article are those of the authors
and do not reflect the official policy or position of the United
States Air Force, Department of Defense, or the United
States Government.

11. REFERENCES

[1] P. Dillien. Shhh, it’s a secret: Encrypting uas
communications. Unmanned Systems, 28(2):43-44, Feb
2010.

[2] M. C. Hansen, H. Yalcin, and J. P. Hayes. Iscas-85
¢6288 16x16 multiplier. World Wide Web. Available at
http://www.eecs.umich.edu/ jhayes/iscas/c6288.html.

[3] M. C. Hansen, H. Yalcin, and J. P. Hayes. Unveiling
the iscas-85 benchmarks: a case study in reverse
engineering. IEEE Design and Test of Computers,
16(3):72 — 80, 1999. Carry look ahead;Error correcting
circuits;Register transfer;.

[4] J. T. McDondald, Y. C. Kim, and M. R. Grimaila.
Protecting reprogrammable hardware with polymorphic
circuit variation. In Proceedings of the 2nd Cyberspace
Research Workshop, pages 63-78, 2009.

[5] K. Nohl, D. Evans, S. Starbug, and H. Plstz.
Reverse-engineering a cryptographic rfid tag. In S5°08:
Proceedings of the 17th conference on Security
symposium, pages 185-193, Berkeley, CA, USA, 2008.
USENIX Association.

[6] Office of the Under Secretary of Defense (Comptroller).
Fy 2009 budget request. World Wide Web, 2008.

[7] J. L. White. Candidate Subcircuit Enumeration for
Module Identification In Digital Circuits. Ph.D.
dissertation, Department of Computer Science and
Engineering, Michigan State University, 2000.

[8] J. L. White, A. S. Wojcik, M.-J. Chung, and T. E.
Doom. Candidate subcircuits for functional module
identification in logic circuits. pages 34 — 38, Chicago,
1L, USA, 2000. Functional module identification;.

