
Deterministic Circuit Variation for Anti-Tamper
Applications

[Extended Abstract]

J. Todd McDonald
University of South Alabama

School of CIS
Mobile, AL 36688

jtmcdonald@usouthal.edu

Yong C. Kim
Air Force Institute of Technology
Dept. of Elec. and Comp. Eng.

Wright-Patterson AFB, OH 45433

ykim@afit.edu

Daniel Koranek
Air Force Research Laboratory

Sensors Directorate
Wright-Patterson AFB, OH 45433

daniel.koranek@wpafb.af.mil

ABSTRACT

The electric power grid underlying our national infrastructure

faces various challenges from adversaries that may exploit

weaknesses gained through tampering and malicious reverse

engineering. In this paper we describe a method for frustrating

such adversaries based on polymorphic generation of circuit

hardware with specific hiding properties in mind. We introduce

component fusion as a technique for generating functionally

equivalent variations of target logic that merge and blur the

boundary between constituent components. We show how both

random and deterministic variation can be combined to produce

circuits that are efficient within allowable bounds while driving

up cost of malicious tamper efforts.

Categories and Subject Descriptors

B.6.1 [Hardware]: Logic Design – design styles, combinational

logic. K.6.5 [Computer Milieux]: Management of Computing

and Information Systems – security and protection, unauthorized

access, invasive software.

General Terms

Algorithms, Measurement, Design, Reliability, Security.

Keywords

Reverse engineering, anti-tamper, circuit protection, polymorphic

generation, software protection, obfuscation, component

identification, circuit variation.

1. INTRODUCTION
Computing technology remains the target of large investment for

both the federal government and industry. Research and

development efforts aim for state-of-the-art advancements,

making technology a valuable commodity as well as the vehicle

for handling our most valuable information. In terms of national

infrastructure, older technology must give way to newer versions

that will transition control and distribution of our national assets

(including energy) for the next generation. Reverse engineering

can shorten the technological advantage for any particular push

forward that is made, whether commercially or as part of our

national computing and power grids. Adversaries seek to

understand technology in order to manipulate it or cause its

compromise—these manipulations ultimately bear on national

security interests themselves which translate to either critical

systems failure or loss of life.

We seek to protect these valuable assets from such observation

and manipulation using the art of the possible. Cryptography

provides us apt protection for sensitive data, but analogous

protections for physical hardware and computing logic are not as

easily derived. Our interest concerns how to protect not just

physical hardware, but general digital circuit definitions such as

application-specific integrated circuits or field programmable gate

arrays from malicious reverse engineering. Obfuscation of

computing logic provides one possibility for degrading an

adversary’s capability.

We consider whether it is possible to construct efficient methods

to generate securely obfuscated versions of combination logic. By

security, we do not mean full protection of a circuit where no

information leaks relative to the original circuit (i.e., a virtual

black box [1]). Rather, we define security by the powers of an

adversary to perform particular analysis tasks related to reverse

engineering [2]. Section 2 gives further background on this

definition. In developing algorithms to answer this question,

three goals emerge: 1) variants must be semantically equivalent,

computing the same output for all inputs; 2) variants should

provide better security related to hiding structural and internal

function information; 3) variants should be producible in a

reasonable timeframe without limitation of resources and should

themselves be significantly no larger than the original. With these

goals in mind, we lay out the remainder of paper as follows:

Section 2 defines terms for circuit variation and algorithms that

produce variation, Section 3 presents our algorithm for producing

anti-tamper security via component merging and Section 4

discusses results from initial experiments.

2. CIRCUIT VARIATION AS DEFENSE
Adversaries use reverse engineering to gain understanding of

underlying systems through analysis of structure, dynamic

operation, and functional observation—all for malicious purposes.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. CSIIRW '11, October

12-14, Oak Ridge, Tennessee, USA Copyright © 2011 ACM 978-1-4503-

0945-5 ISBN ... $5.00

Obfuscation provides one form of protection to deter, degrade, or

prevent adversarial actions along those lines.

For experimental purposes, we consider specifically the properties

of programs expressed as combinational logic circuits. We model

these circuits as Directed Acyclic Graphs (DAGs) and use

traditional Boolean logic gates as vertices in the connected graph.

Given a basis set Ω  {AND, OR, XOR, NAND, NOR, XNOR},

we define a circuit C as a DAG having either nodes mapping to

functions in Ω (referred to as intermediate gates) or having nodes

with in-degree 0 being termed inputs. Outputs are one or more

distinguished intermediate nodes. Circuit behavior is

representable as a Boolean function, f :{0,1}n→{0,1}m, where n is

the input size (or input length) and m is the output size (or output

length) in bits. We refer to function-preserving changes in the

underlying structure or graph of the circuit (replacing one or more

gates with other Boolean logic gates) as white-box variation.

2.1 Defining Obfuscation
An algorithm, O: Ω →Ω, is a polynomial time algorithm that

takes as an argument circuit C  Ω and returns a functionally

equivalent version C’  Ω. For semantic equivalence of variants,

it follows that x: C(x) = C’(x), where x  {0,1}n for all possible

C  Ω. O represents a white-box variation engine under this

definition. We distinguish the nature of the obfuscating algorithm

O and the distribution of circuits that it produces from some

original circuit C.

On one hand, we desire O to be a publically known algorithm,

consistent with Kerckhoff’s principle1, that makes pseudo-random

mutations to produce a variant, where the particular choices made

essentially forms a secret key. To maximize security of the

obfuscator, we would prefer O to make a uniform, random choice

from the subset of all possible circuits that have the same function

as a candidate circuit C. Given this requirement, adversaries

would gain no advantage from having the code for the algorithm

O because the set of possible variants for any reasonably sized

circuit is enormous. Under this definition, O would be equivalent

in performance to the statistically indistinguishable and best

possible obfuscators defined by Goldwasser and Rothblum [1].

Though efficient (tractable) obfuscators are not possible to

produce under this definition, we consider whether we can

approximate circuits with random, uniform properties through

sequences of small random, uniform mutations.

On the other hand, we also desire the distribution of circuits (C’)

produced by O to demonstrate security properties of interest: in

other words, any given C’ variant should reveal less information

in regards to one or more specific adversarial analysis vectors.

These properties of interest include topological configuration,

signal information, component configuration, control signal

allocation, or other user-specific white-box characteristic [2,3].

We specify these particular characteristics because they lay the

foundation for learning the abstract representation of any given

circuit.

Whereas our first distinction defines the quality of the obfuscator

itself, the latter distinction defines the properties of the circuit

variants we want the obfuscator to produce. Our ongoing

1 Auguste Kerckhoff in La Cryptographie Militaire: the security of a

cryptosystem should rest solely in the secrecy of key and not the design

of the system itself.

research to pursue both goals reveals that the two distinctions are

not synonymous.

Initial research [3,4] reveals that attempts to approach a uniform,

random distribution may not necessarily produce circuits with less

information relative to a specific adversarial, white-box analysis

goal. In addition, purely random, small-scale variation techniques

at a structural level introduce redundant logic patterns that are

reducible via application of Boolean logic laws [5]. Our initial

hypothesis in [6] concerned whether approximating a truly

random selection C’R  C would produce variants that provide

better security. Under a best possible or random program

definition of statistical indistinguishability, no guarantee exists for

variants to exhibit better security related to some original circuit.

Our previous work in the area deals with designing obfuscating

engines that use iterative, random white-box transformations and

observing whether variant distributions approach uniform

properties [4,5,6]. More importantly, we study whether variants

produced by such obfuscators manifest hiding properties related

to structural characteristics of a circuit (topology hiding, signal

recovery, or in our current study, component hiding) which are

essential for successful reverse engineering.

2.2 White-Box Variation
We define the domain set Ω as the set of all possible circuits

derivable from combinational logic based on basis (gate set) Ω.

Within this infinite set of circuits Ω, we can partition subsets

based on circuits with n inputs and m outputs. We can narrow this

partition further based on other circuit-related features such as

gate size, number of levels, number of control paths, etc. For

analyzing variants of a candidate circuit C  Ω, we use gate size

and consider circuits that have the same gate size as C plus some

allowable increase in size based on constraints of the environment

(200% increase in gate size for example). We denote a circuit

family n-m-S-Ω as the set of all circuits with input length n, output

length m, maximum intermediate gate size S, and basis Ω. We let

C represent a subset of circuits that compute the same function,

fC:{0,1}n→{0,1}m, as circuit C. Figure 1 depicts our domain of

interest C  n-m-S-Ω  Ω and operation of algorithm O.

Figure 1. Domain of Interest for Circuit Variation

Figure 1 illustrates the concept of incremental white-box

variation. Given a circuit C  C  n-m-S-Ω  Ω, a randomizing

obfuscator that uses iterative function-preserving white-box

changes will produce a sequence of variants: {C’1, C’2,…, C’z},

where for j = 1 .. z: x, C’j(x) = C(x). The final variant C’z

become the output of the obfuscator, O(C) = C’. The variable z

represents some upper bound of iterations by the obfuscator and

we use desired operational limits to constrain its value (maximum

gate size, number of levels, etc.). All function preserving

obfuscators generate and effectively choose a variant C’ from C.

Figure 1 also illustrates how an ideal obfuscator that uniformly

selects a replacement C’ from the set of all possible elements in

C would produce a distribution so that O(C) = C1 is statistically

indistinguishable from O(C) = C2. Likewise O(C) = C1 is

indistinguishable from O(C1) = C2. To accomplish this, an

obfuscator in the ideal case would generate all possible variants in

the set C and then make a uniform selection, C’R. For all but

very small circuits (gate size <= 6), full set generation and

random uniform selection remains intractable.

2.3 Random Variation vs. Achievable Hiding
Hansen et al. [6] list several reverse engineering techniques and

adversarial goals: (known/standard) library modules, repeated

modules, expected global structures, computed functions, control

functions, bus structures, and common names. Because of the

importance of components in building digital logic systems, we

focus this paper on the adversarial goal of component recovery (or

module identification): the act of reproducing the architectural or

component level relationships of the original circuit ([7,8]).

Though other goals are important, component identification is by

far the first and primary goal of a reverse engineer to organize

lower level combinational logic into known abstractions which

can be further studied.

3. Deterministic Variation
We define an obfuscating engine O that produces variation by

using a sequence of small, incremental function preserving

changes. The collected random choices of the O in making such

choices form a secret key. Given the key, we can reproduce every

individual change that went into producing a final variant.

Without the key, we reduce an adversary to observing products of

the obfuscating engine plus any information they derive from the

obfuscator code itself.

We define our general obfuscating algorithm, O(C) = C’, as:

 Given a circuit C  Ω, let C0 = C
 FOR i = 0 to z:

1) SELECT a set of gates Gi as a subcircuit within

Ci and let fGi represent its function

2) REPLACE subcircuit Gi with a version Gi+1 such

that x: fGi(x) = fGi+1(x)
3) REMOVE subcircuit Gi from Ci and replace with Gi+1

4) let Ci+1 = Ci

We consider each operation of the ‘FOR’ loop as an iteration. For

each SELECT and REPLACE operation, we categorize the four

possible strategies based on whether each select/replace operation

is predominantly pre-determined or pseudo-random.

3.1 Random Selection and Replacement
Selection in our obfuscation algorithm is typically limited by the

capabilities of the replacement engine itself. Our experimental

work has focused on approaching an overall uniform random

selection of the obfuscator by making uniform random selections

during each iteration. In order to make a uniform random

replacement, the size or number of gates in the selection sub-

circuit has to remain small (size <= 6) because fully enumerating

all circuits in the family n-m-S-Ω is intractable for larger sub-

circuits. By using this approach, the obfuscator is limited in the

possible variants reachable by random selection and replacement

alone and we designate the set of these variants as C-REACHABLE.

As figure 2 represents, we strive to find circuits that exhibit good

hiding properties of interest, which we designate by circuits in the

subset C-GOOD.

Figure 2. Limitations of Random Selection/Replacement

3.2 Deterministic Component Fusion
We define obfuscation research as the goal to find efficient

algorithms that minimize the difference between the two sets: C-

REACHABLE  C-GOOD. In order to overcome limitations of random

selection and random replacement, we define a deterministic

selection and replacement scheme called component fusion to

guide the variation process towards circuits within C-GOOD. We

narrow the nebulous concept of which circuits exist in C-GOOD by

focusing only on circuit variants that exhibit component hiding

properties. In previous results [5, 8], we have reported the

general efficacy of deterministic strategies aimed at degrading

adversarial component identification and identified circuits with

certain component configurations which are not conducive to

hiding with any obfuscation technique at all. Formally, given a

circuit C, its gate set G, its input set I, and an integer p > 1, where

p is the number of components, a set M of components {m1,…,

mp} partitions G and I into p disjoint sets of inputs and/or gates. In

component fusion, we modify the general selection/replacement

algorithm defined earlier as follows:

 Given a circuit C  Ω and let C0 = C

 Let G = the gate set of C and let GUNUSED = 
 Let M = {m1, m2, m3, …, mp}, a component set of C

 REPEAT

1) SELECT a component mi  M
2) PARTITION unused gates into connected

subcircuits to produce component mi’

3) MERGE component mi’ into Ci and add any changed

gates to GUNUSED

4) let Ci+1 = Ci

 UNTIL GUNUSED = G

The SELECT and PARTITION operations of the algorithm use

pseudo-random choices to drive the variation process so that each

execution of O will produce a unique distribution of intermediate

and final variants. The output of the PARTITION operation is

itself a subcircuit that forms the basis for replacement which is

passed on to the MERGE operation. The MERGE operation

involves a deterministic approach defined as follows: 1) choose a

random gate basis ; 2) choose a random Product of Sum/Sum of

Products implementation as a canonical form; 3) using

ESPRESSO’s Quine McCluskey algorithm, logically reduce the

component mi’ to generate a replacement subcircuit. Figure 3

depicts the overall operation of a given iteration in the algorithm.

Figure 3-(1) represents the partition of C into component set M;

Figure 3-(2) represents the SELECT of a component mi plus the

PARTITION operation which adds gates from predecessor

components; Figure 3-(3) and 3-(4) depicts the MERGE operation

which reduces the component mi’ back into the original circuit.

This technique offers several advantages towards security

(defined as degradation of adversarial component recovery) and

efficiency: 1) the component selection and Quine McCluskey

reduction ensures replacement of the selected sub-circuit every

iteration; 2) the use of component definitions hides known

existing information specific to original component relationships;

3) predecessor addition ensures selection and replacement will

always overlap; 4) deterministic replacement method increases

speed of finding replacements while using random synthesis; 5)

each replacement is a small version of a virtual black box.

Figure 3. Component Fusion at a Glance

4. EXPERIMENTAL RESULTS
Initial results for experiments using the component fusion appear

promising for both security and efficiency. We set up obfuscation

experiments using the c6288 16-bit multiplier circuit that is part

of the ISCAS-85 benchmark set. The c6288 represents a good test

case for component hiding because it is a 32 input/32 output

circuit composed of 224 full-adder components and 16 half-adder

components. Identification tools easily identify all components in

c6288 in a single pass within 2 minutes; we use the component

identification algorithm of White as the basis for our adversarial

recognition tool [9]. For comparison, we build on existing results

from experiments using random selection and replacement (SSR)

and component boundary blurring algorithms [8]. We execute the

component fusion algorithm in 50 different experiments using the

c6288 as the candidate C. For comparison, we run the same

experiments on algorithms based on SSR and boundary blurring

and use component identification on the resulting variants. We

represent the average number of components identified across

variants as a percentage and show our results in Figure 4. In all

cases, purely random selection and replacement allows

identification of some or all of the original full-adders and half-

adders from the original c6288. Component fusion improves

component recovery results 37% over the best random

selection/replacement technique and is comparable to the

deterministic boundary blurring reported in other studies [8].

Figure 4 illustrates that some forms of SSR created minimal or no

hiding of original components at all.

In conclusion, we report a small subset of our experimental results

in figure 4, but note the following trends from our full study.

Gate size in variants was on average 350% larger than the original

circuit. Future work will aim to reduce the size of variants further

using integrated logic reduction techniques. We observe results

with other circuit families of interest and found similar trends

regarding 100% component hiding using the identification tool.

Additional work will seek to find other techniques for component

identification for adversarial comparison. The value of the study

indicates that completely unprotected versions of circuits provide

no hindrance to a determined adversary. Deterministic variation

techniques such as component fusion demonstrate empirically that

adversaries cannot rely on component identification techniques to

recover component information during the reverse engineering

process, thus providing impetus for future study on a broader

range of circuits.

Figure 4. Component Identification under Component Fusion

5. ACKNOWLEDGMENTS
This material is based upon work supported in part by the

U.S. Air Force Office of Scientific Research under grant

number F1ATA09048G001. The views expressed in this article

are those of the authors and do not reflect the official policy or

position of the Unites States Air Force, Department of

Defense, or the U.S. Government.

6. REFERENCES
[1] Goldwasser, S. and Rothblum, G. On best-possible

obfuscation. LNCS, Vol. 4392, TCC 2007, Springer-Verlag,

2007, 194–213.

[2] Kim, Y. and McDonald J. Considering Software Protection

for Embedded Systems. Crosstalk, 22, 6 (Sep/Oct 2009), 4-8.

[3] McDonald J., Kim Y., and Yasinsac A. Software issues in

digital forensics. ACM Operating Systems Review, 42, 3

(April 2008).

[4] McDonald J., Kim Y., and Grimaila, M. Protecting

Reprogrammable Hardware with Polymorphic Circuit

Variation. In Proc. of the 2nd Cyber Research Wrkshp (June

2009), Shreveport, LA.

[5] McDonald J., Trias, E., et al. Using Logic-Based Reduction

for Adversarial Component Recovery. In Proc. of the 25th

ACM SAC (March 2010), Sierre, Switzerland,

[6] Yasinsac, A. and McDonald, J. Of unicorns and random

programs. In Proc. of 3rd IASTED CCN (2005), Marina, CA.

[7] Hansen, M., Yalcin, H., and Hayes, J. Unveiling the ISCAS-

85 benchmarks: a case study in reverse engineering. IEEE

Design & Test of Computers, 16, 3 (1999), 72–80.

[8] Parham J., Kim Y., et al. Hiding Circuit Components Using

Boundary Blurring Techniques. In Proc. of IEEE Annual

Symposium on VLSI (Jul. 5-7, 2010), Cephalonia, Greece.

[9] White J., Wojcik, A., et al., Candidate sub-circuits for

functional module identification in logic circuits,” Proc. of

the 10th Great Lakes Symposium on VLSI (2000), Chicago,

IL, 34 – 38.

