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ABSTRACT 

The electric power grid underlying our national infrastructure 

faces various challenges from adversaries that may exploit 

weaknesses gained through tampering and malicious reverse 

engineering. In this paper we describe a method for frustrating 

such adversaries based on polymorphic generation of circuit 

hardware with specific hiding properties in mind.  We introduce 

component fusion as a technique for generating functionally 

equivalent variations of target logic that merge and blur the 

boundary between constituent components.  We show how both 

random and deterministic variation can be combined to produce 

circuits that are efficient within allowable bounds while driving 

up cost of malicious tamper efforts.  

Categories and Subject Descriptors 

B.6.1 [Hardware]: Logic Design – design styles, combinational 

logic. K.6.5 [Computer Milieux]: Management of Computing 

and Information Systems – security and protection, unauthorized 

access, invasive software.  

General Terms 

Algorithms, Measurement, Design, Reliability, Security. 

Keywords 

Reverse engineering, anti-tamper, circuit protection, polymorphic 

generation, software protection, obfuscation, component 

identification, circuit variation. 

1. INTRODUCTION 
Computing technology remains the target of large investment for 

both the federal government and industry.  Research and 

development efforts aim for state-of-the-art advancements, 

making technology a valuable commodity as well as the vehicle 

for handling our most valuable information.  In terms of national 

infrastructure, older technology must give way to newer versions 

that will transition control and distribution of our national assets 

(including energy) for the next generation.  Reverse engineering 

can shorten the technological advantage for any particular push 

forward that is made, whether commercially or as part of our 

national computing and power grids.  Adversaries seek to 

understand technology in order to manipulate it or cause its 

compromise—these manipulations ultimately bear on national 

security interests themselves which translate to either critical 

systems failure or loss of life. 

We seek to protect these valuable assets from such observation 

and manipulation using the art of the possible.  Cryptography 

provides us apt protection for sensitive data, but analogous 

protections for physical hardware and computing logic are not as 

easily derived.  Our interest concerns how to protect not just 

physical hardware, but general digital circuit definitions such as 

application-specific integrated circuits or field programmable gate 

arrays from malicious reverse engineering. Obfuscation of 

computing logic provides one possibility for degrading an 

adversary’s capability.     

We consider whether it is possible to construct efficient methods 

to generate securely obfuscated versions of combination logic. By 

security, we do not mean full protection of a circuit where no 

information leaks relative to the original circuit (i.e., a virtual 

black box [1]).  Rather, we define security by the powers of an 

adversary to perform particular analysis tasks related to reverse 

engineering [2]. Section 2 gives further background on this 

definition.  In developing algorithms to answer this question, 

three goals emerge: 1) variants must be semantically equivalent, 

computing the same output for all inputs; 2) variants should 

provide better security related to hiding structural and internal 

function information; 3) variants should be producible in a 

reasonable timeframe without limitation of resources and should 

themselves be significantly no larger than the original. With these 

goals in mind, we lay out the remainder of paper as follows: 

Section 2 defines terms for circuit variation and algorithms that 

produce variation, Section 3 presents our algorithm for producing 

anti-tamper security via component merging and Section 4 

discusses results from initial experiments.   

2. CIRCUIT VARIATION AS DEFENSE 
Adversaries use reverse engineering to gain understanding of 

underlying systems through analysis of structure, dynamic 

operation, and functional observation—all for malicious purposes.  
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Obfuscation provides one form of protection to deter, degrade, or 

prevent adversarial actions along those lines.   

For experimental purposes, we consider specifically the properties 

of programs expressed as combinational logic circuits.  We model 

these circuits as Directed Acyclic Graphs (DAGs) and use 

traditional Boolean logic gates as vertices in the connected graph. 

Given a basis set Ω  {AND, OR, XOR, NAND, NOR, XNOR}, 

we define a circuit C as a DAG having either nodes mapping to 

functions in Ω (referred to as intermediate gates) or having nodes 

with in-degree 0 being termed inputs. Outputs are one or more 

distinguished intermediate nodes. Circuit behavior is 

representable as a Boolean function, f :{0,1}n→{0,1}m, where n is 

the input size (or input length) and m is the output size (or output 

length) in bits. We refer to function-preserving changes in the 

underlying structure or graph of the circuit (replacing one or more 

gates with other Boolean logic gates) as white-box variation. 

2.1 Defining Obfuscation 
An algorithm, O: Ω →Ω, is a polynomial time algorithm that 

takes as an argument circuit C  Ω and returns a functionally 

equivalent version C’  Ω.  For semantic equivalence of variants, 

it follows that x: C(x) = C’(x), where x  {0,1}n for all possible 

C  Ω. O represents a white-box variation engine under this 

definition. We distinguish the nature of the obfuscating algorithm 

O and the distribution of circuits that it produces from some 

original circuit C.  

On one hand, we desire O to be a publically known algorithm, 

consistent with Kerckhoff’s principle1, that makes pseudo-random 

mutations to produce a variant, where the particular choices made 

essentially forms a secret key. To maximize security of the 

obfuscator, we would prefer O to make a uniform, random choice 

from the subset of all possible circuits that have the same function 

as a candidate circuit C. Given this requirement, adversaries 

would gain no advantage from having the code for the algorithm 

O because the set of possible variants for any reasonably sized 

circuit is enormous.  Under this definition, O would be equivalent 

in performance to the statistically indistinguishable and best 

possible obfuscators defined by Goldwasser and Rothblum [1].  

Though efficient (tractable) obfuscators are not possible to 

produce under this definition, we consider whether we can 

approximate circuits with random, uniform properties through 

sequences of small random, uniform mutations.  

On the other hand, we also desire the distribution of circuits (C’) 

produced by O to demonstrate security properties of interest: in 

other words, any given C’ variant should reveal less information 

in regards to one or more specific adversarial analysis vectors.  

These properties of interest include topological configuration, 

signal information, component configuration, control signal 

allocation, or other user-specific white-box characteristic [2,3].  

We specify these particular characteristics because they lay the 

foundation for learning the abstract representation of any given 

circuit.   

Whereas our first distinction defines the quality of the obfuscator 

itself, the latter distinction defines the properties of the circuit 

variants we want the obfuscator to produce.  Our ongoing 

                                                                 

1 Auguste Kerckhoff in La Cryptographie Militaire: the security of a 

cryptosystem should rest solely in the secrecy of key and not the design 

of the system itself. 

research to pursue both goals reveals that the two distinctions are 

not synonymous.  

Initial research [3,4] reveals that attempts to approach a uniform, 

random distribution may not necessarily produce circuits with less 

information relative to a specific adversarial, white-box analysis 

goal.  In addition, purely random, small-scale variation techniques 

at a structural level introduce redundant logic patterns that are 

reducible via application of Boolean logic laws [5]. Our initial 

hypothesis in [6] concerned whether approximating a truly 

random selection C’R  C would produce variants that provide 

better security. Under a best possible or random program 

definition of statistical indistinguishability, no guarantee exists for 

variants to exhibit better security related to some original circuit. 

Our previous work in the area deals with designing obfuscating 

engines that use iterative, random white-box transformations and 

observing whether variant distributions approach uniform 

properties [4,5,6]. More importantly, we study whether variants 

produced by such obfuscators manifest hiding properties related 

to structural characteristics of a circuit (topology hiding, signal 

recovery, or in our current study, component hiding) which are 

essential for successful reverse engineering.  

2.2 White-Box Variation 
We define the domain set Ω as the set of all possible circuits 

derivable from combinational logic based on basis (gate set) Ω. 

Within this infinite set of circuits Ω, we can partition subsets 

based on circuits with n inputs and m outputs.  We can narrow this 

partition further based on other circuit-related features such as 

gate size, number of levels, number of control paths, etc.  For 

analyzing variants of a candidate circuit C  Ω, we use gate size 

and consider circuits that have the same gate size as C plus some 

allowable increase in size based on constraints of the environment 

(200% increase in gate size for example). We denote a circuit 

family n-m-S-Ω as the set of all circuits with input length n, output 

length m, maximum intermediate gate size S, and basis Ω. We let 

C represent a subset of circuits that compute the same function, 

fC:{0,1}n→{0,1}m, as circuit C. Figure 1 depicts our  domain of 

interest C  n-m-S-Ω  Ω and operation of algorithm O.  

 

Figure 1. Domain of Interest for Circuit Variation 

Figure 1 illustrates the concept of incremental white-box 

variation.  Given a circuit C  C  n-m-S-Ω  Ω, a randomizing 

obfuscator that uses iterative function-preserving white-box 

changes will produce a sequence of variants: {C’1, C’2,…, C’z}, 

where for j = 1 .. z: x, C’j(x) =  C(x). The final variant C’z 

become the output of the obfuscator, O(C) = C’. The variable z 

represents some upper bound of iterations by the obfuscator and 



we use desired operational limits to constrain its value (maximum 

gate size, number of levels, etc.). All function preserving 

obfuscators generate and effectively choose a variant C’ from C. 

Figure 1 also illustrates how an ideal obfuscator that uniformly 

selects a replacement C’ from the set of all possible elements in 

C would produce a distribution so that O(C) = C1 is statistically 

indistinguishable from O(C) = C2. Likewise O(C) = C1 is 

indistinguishable from O(C1) = C2. To accomplish this, an 

obfuscator in the ideal case would generate all possible variants in 

the set C and then make a uniform selection, C’R.  For all but 

very small circuits (gate size <= 6), full set generation and 

random uniform selection remains intractable.   

2.3 Random Variation vs. Achievable Hiding 
Hansen et al. [6] list several reverse engineering techniques and 

adversarial goals: (known/standard) library modules, repeated 

modules, expected global structures, computed functions, control 

functions, bus structures, and common names. Because of the 

importance of components in building digital logic systems, we 

focus this paper on the adversarial goal of component recovery (or 

module identification): the act of reproducing the architectural or 

component level relationships of the original circuit ([7,8]).  

Though other goals are important, component identification is by 

far the first and primary goal of a reverse engineer to organize 

lower level combinational logic into known abstractions which 

can be further studied. 

3. Deterministic Variation 
We define an obfuscating engine O that produces variation by 

using a sequence of small, incremental function preserving 

changes. The collected random choices of the O in making such 

choices form a secret key.  Given the key, we can reproduce every 

individual change that went into producing a final variant. 

Without the key, we reduce an adversary to observing products of 

the obfuscating engine plus any information they derive from the 

obfuscator code itself.   

We define our general obfuscating algorithm, O(C) = C’, as: 

   Given a circuit C  Ω, let C0 = C 
   FOR i = 0 to z: 

1) SELECT a set of gates Gi as a subcircuit within 

Ci and let fGi represent its function 

2) REPLACE subcircuit Gi with a version Gi+1 such 

that x: fGi(x) = fGi+1(x) 
3) REMOVE subcircuit Gi from Ci and replace with Gi+1 

4) let Ci+1 = Ci 

We consider each operation of the ‘FOR’ loop as an iteration. For 

each SELECT and REPLACE operation, we categorize the four 

possible strategies based on whether each select/replace operation 

is predominantly pre-determined or pseudo-random. 

3.1 Random Selection and Replacement 
Selection in our obfuscation algorithm is typically limited by the 

capabilities of the replacement engine itself.  Our experimental 

work has focused on approaching an overall uniform random 

selection of the obfuscator by making uniform random selections 

during each iteration.  In order to make a uniform random 

replacement, the size or number of gates in the selection sub-

circuit has to remain small (size <= 6) because fully enumerating 

all circuits in the family n-m-S-Ω is intractable for larger sub-

circuits.  By using this approach, the obfuscator is limited in the 

possible variants reachable by random selection and replacement 

alone and we designate the set of these variants as C-REACHABLE.  

As figure 2 represents, we strive to find circuits that exhibit good 

hiding properties of interest, which we designate by circuits in the 

subset C-GOOD.   

 

Figure 2. Limitations of Random Selection/Replacement 

3.2 Deterministic Component Fusion 
We define obfuscation research as the goal to find efficient 

algorithms that minimize the difference between the two sets: C-

REACHABLE  C-GOOD.  In order to overcome limitations of random 

selection and random replacement, we define a deterministic 

selection and replacement scheme called component fusion to 

guide the variation process towards circuits within C-GOOD.  We 

narrow the nebulous concept of which circuits exist in C-GOOD by 

focusing only on circuit variants that exhibit component hiding 

properties.  In previous results [5, 8], we have reported the 

general efficacy of deterministic strategies aimed at degrading 

adversarial component identification and identified circuits with 

certain component configurations which are not conducive to 

hiding with any obfuscation technique at all. Formally, given a 

circuit C, its gate set G, its input set I, and an integer p > 1, where 

p is the number of components, a set M of components {m1,…, 

mp} partitions G and I into p disjoint sets of inputs and/or gates. In 

component fusion, we modify the general selection/replacement 

algorithm defined earlier as follows: 

    Given a circuit C  Ω and let C0 = C 

    Let G = the gate set of C and let GUNUSED  =  
    Let M = {m1, m2, m3, …, mp}, a component set of C     

    REPEAT  

1) SELECT a component mi  M 
2) PARTITION unused gates into connected 

subcircuits to produce component mi’ 

3) MERGE component mi’ into Ci and add any changed 

gates to GUNUSED 

4) let Ci+1 = Ci 

    UNTIL GUNUSED = G 

The SELECT and PARTITION operations of the algorithm use 

pseudo-random choices to drive the variation process so that each 

execution of O will produce a unique distribution of intermediate 

and final variants.  The output of the PARTITION operation is 

itself a subcircuit that forms the basis for replacement which is 

passed on to the MERGE operation. The MERGE operation 

involves a deterministic approach defined as follows: 1) choose a 

random gate basis ; 2) choose a random Product of Sum/Sum of 

Products implementation as a canonical form; 3) using 

ESPRESSO’s Quine McCluskey algorithm, logically reduce the 

component  mi’ to generate a replacement subcircuit. Figure 3 

depicts the overall operation of a given iteration in the algorithm.  

Figure 3-(1) represents the partition of C into component set M; 

Figure 3-(2) represents the SELECT of a component mi plus the 

PARTITION operation which adds gates from predecessor 

components; Figure 3-(3) and 3-(4) depicts the MERGE operation 

which reduces the component mi’ back into the original circuit. 

This technique offers several advantages towards security 



(defined as degradation of adversarial component recovery) and 

efficiency: 1) the component selection and Quine McCluskey 

reduction ensures replacement of the selected sub-circuit every 

iteration; 2) the use of component definitions hides known 

existing information specific to original component relationships; 

3) predecessor addition ensures selection and replacement will 

always overlap; 4) deterministic replacement method increases 

speed of finding replacements while using random synthesis; 5) 

each replacement is a small version of a virtual black box.  

 

Figure 3. Component Fusion at a Glance 

4. EXPERIMENTAL RESULTS 
Initial results for experiments using the component fusion appear 

promising for both security and efficiency.  We set up obfuscation 

experiments using the c6288 16-bit multiplier circuit that is part 

of the ISCAS-85 benchmark set. The c6288 represents a good test 

case for component hiding because it is a 32 input/32 output 

circuit composed of 224 full-adder components and 16 half-adder 

components. Identification tools easily identify all components in 

c6288 in a single pass within 2 minutes; we use the component 

identification algorithm of White as the basis for our adversarial 

recognition tool [9]. For comparison, we build on existing results 

from experiments using random selection and replacement (SSR) 

and component boundary blurring algorithms [8].  We execute the 

component fusion algorithm in 50 different experiments using the 

c6288 as the candidate C. For comparison, we run the same 

experiments on algorithms based on SSR and boundary blurring 

and use component identification on the resulting variants. We 

represent the average number of components identified across 

variants as a percentage and show our results in Figure 4. In all 

cases, purely random selection and replacement allows 

identification of some or all of the original full-adders and half-

adders from the original c6288. Component fusion improves 

component recovery results 37% over the best random 

selection/replacement technique and is comparable to the 

deterministic boundary blurring reported in other studies [8].  

Figure 4 illustrates that some forms of SSR created minimal or no 

hiding of original components at all.  

In conclusion, we report a small subset of our experimental results 

in figure 4, but note the following trends from our full study.  

Gate size in variants was on average 350% larger than the original 

circuit. Future work will aim to reduce the size of variants further 

using integrated logic reduction techniques. We observe results 

with other circuit families of interest and found similar trends 

regarding 100% component hiding using the identification tool.  

Additional work will seek to find other techniques for component 

identification for adversarial comparison.  The value of the study 

indicates that completely unprotected versions of circuits provide 

no hindrance to a determined adversary.  Deterministic variation 

techniques such as component fusion demonstrate empirically that 

adversaries cannot rely on component identification techniques to 

recover component information during the reverse engineering 

process, thus providing impetus for future study on a broader 

range of circuits. 

 

Figure 4. Component Identification under Component Fusion 
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