
 1



Abstract—Security for Cyber physical systems includes not

only guaranteeing operational security of data they process, but

preventing malicious alteration of their execution due to

knowledge of their underlying structure. With the advent of

software in the form of reprogrammable hardware descriptions,

protection of field programmable units from malicious reverse

engineering and subversion becomes more critical. We compare

four different white-box transformation algorithms aimed at

hindering adversarial reverse engineering by changing

component and signal configurations within combinational logic

programs. We present security and efficiency analysis for these

techniques and show positive results for achieving measurable

hiding of signal and component information.

Index Terms—Circuit Analysis, Combinational Circuits,

Programmable Logic Devices, Computer Hacking, Computer

Security.

I. INTRODUCTION

OMPUTING technology embodied in both hardware

circuitry and software represents a significant portion of

both military and commercial development budgets.

Adversaries target design understanding for this technology to

find exploitable flaws, manipulate control for nefarious

purposes, or clone system components for other uses. While

cryptography provides adequate protection for data security,

protection of design information inherent in programmatic

specifications is not as firm. Nohl et al. [1], for example,

showed the relative ease of reverse engineering the Milfare

Classic RFID tag based on gate structure analysis in order to

compromise cipher implementations. Popular hardware such

as the Apple iPhone are sold at reduced versions overseas

because cloning of underlying intellectual property can be

Manuscript received September 19, 2011. This work was supported in part

by the by the U.S. Air Force Office of Scientific Research under grant number

F1ATA07337J001.

Jeffrey T. McDonald is an Associate Professor with the School of

Computer and Information Science at the University of South Alabama,

Mobile, AL, 36688, USA (phone 251-460-7555; fax:251-460-7274; e-mail:

jtmcdonald@usouthal.edu).

Yong C. Kim is with the Air Force Research Laboratory, Wright-Patterson,

AFB, OH, 45433 (e-mail: engafit@yahoo.com).

James. D. Parham is with Air Force Research Laboratory, Kirtland AFB,

NM (e-mail: James.Parham@kirtland.af.mil).

Daniel J. Koranek is with the Air Force Research Laboratory, Wright-

Patterson AFB, OH 45433 (e-mail: daniel.koranek@wpafb.af.mil).

accomplished [2]. In general, it can be much more economical

for a foreign government to reverse engineer existing

technology rather than procure a similar product from scratch

[3]. Chikofsky and Cross [4] define reverse engineering as an

analysis task of a subject system that creates equivalent

representations at higher abstraction levels. Though industry

and military analysts use reverse engineering to recover lost

design information for legal, economical, and defensive

purposes, we consider its nefarious use for malicious purposes.

We report results in this paper on techniques that involve

combinatorial circuit designs. Namely, can we generate

variants of such logic programs which convey less information

about a circuit’s original function and structure so that an

adversaries ability to reverse engineer the circuit is

significantly degraded? Algorithms that create variants are

commonly known as obfuscators and theoretical study of

obfuscation has received much attention over the last decade

[5]–[7]. Given the theoretical impossibility of producing a

circuit variant that hides all information leakage relative to an

original circuit (other than its black-box behavior), we

consider efficient obfuscation algorithms that produce

semantically equivalent versions of circuits where the

elimination of some functional information or some structural

information can be empirically measured.

To discuss our finding, Section II introduces the scope of

our obfuscation study and defines security based on functional

and structural hiding related to component identification.

Section III defines four different methods for achieving

component hiding that can deter a malicious reverse engineer.

Section IV presents empirical results using these methods on

sample combinational logic programs. Section V summarizes

our results and gives point for future work.

II. VARIATION AND CIRCUIT PROTECTION

A. Defining Circuits, Signals, and Components

We consider combinational logic programs and the effect of

structural changes at the syntactic/gate level where semantics

of the overall circuit are preserved. Combinational logic

represents a large class of software constructs where straight-

line logic is involved. Sequential logic represents the more

robust category of programmatic logic seen in traditional

software where looping constructs are allowed; translation

between high level languages and general circuitry provides

Evaluating Component Hiding Techniques in

Circuit Topologies

Jeffrey T. McDonald, Member, IEEE, Yong C. Kim, Member, IEEE, Daniel J. Koranek, James D.

Parham,

C

 2

correlation of results using either software or hardware-based

program descriptions [8]. We motivate our study of hiding

properties using combinational logic for two reasons: 1)

reverse engineering of circuits occurs frequently at the gate or

ASIC level where combinatorial logic is prevalent; and 2)

sequential circuits may be decomposed into combinational

components for analysis and synthesis, separating state and

memory decisions from allocation of basic building blocks.

For simplicity, we define a circuit as a directed, acyclic

graph D(V,E) of inputs, logic gates, and outputs where 1) V

describes a set of nodes (or vertices) representing logic gates

and 2) E represents the set of edges representing wires

connecting the output of some logic gate (or an input to the

circuit) to the input of some other logic gate (or an output of

the circuit). We define a subcircuit as a subgraph of some

circuit C. The logic gates themselves map to known Boolean

functions in a given basis set Ω such as Ω  {AND, OR, XOR,

NAND, NOR, XNOR}. We may represent circuit semantics as

a Boolean function, fC:{0,1}
n
→{0,1}

m
, where n is the input

size and m is the output size in bits.

Enumerating the full truth-table (a collection of all possible

input/output pairs for a circuit) remains infeasible for most

circuits because of the exponential (2
n
) blow-up. Fig. 1

illustrates the truth-table for a 3-input, 2-output NOR-gate full-

adder circuit. We define a signal as the truth table value for an

intermediate gate within the graph of circuit. In Fig. 1, gates

4–10 are intermediate gates and their possible values form a

truth-table (column) based on possible inputs and propagation

of predecessor values. The signals of output gates (Sum, Cout

as seen in Fig. 1), when associated with their respective inputs,

create the semantics of the entire circuit. Fig. 2 illustrates the

full-adder circuit and its corresponding signal values.

In order to discuss component properties, we define a

candidate component based on White’s definition [9] as a

specified subcircuit which is fully specified, fully contained, or

both. White’s algorithm on subcircuit enumeration and

identification forms the basis for our empirical study on

component hiding. As a more suitable extension to this

definition, we define a component as a subgraph with a

specific input/output pattern whose semantics (truth table

input/output mapping) are known.

Fig. 1. Truth-table for 9-gate, NOR full-adder: n = 3, m = 2

B. Analysis Activities

In considering the goals of a reverse-engineering adversary,

we make several educated assumptions about the strategies

used to recover higher level design specifications of a circuit.

We assume that a reverse-engineering adversary can perform

black-box analysis on a circuit C by applying values to its n

input gates and observing values of its m output gates, which is

to say, they have oracle access to C. Because full truth-table

analysis remains intractable for large input circuits (n > 50),

we assume that adversaries are driven to combined analysis

that looks at white-box topology and various gate signals.

Fig. 2. NOR full-adder circuit topology and signal values

Because reverse engineers are particularly interested in the

white-box information leaked by a circuit, we assume an

adversary driven to white-box analysis attempts to identify

components and the communication (signals and wiring)

between them as their primary method to attain a higher-level

circuit abstraction.

C. Semantic Preserving Polymorphic White-Box Variation

An obfuscator O is a polynomial-time algorithm that takes

as input circuit C and returns a semantically equivalent version

C’. Obfuscators produce a distribution of circuit variants that

are functionally equivalent to a given C; we analyze variants in

the distributions empirically on the basis of whether a variant

exhibits a hiding property of interest. Variants are polymorphic

by nature because they represent alternative forms of an

original. We consider obfuscating algorithms that iteratively

change the internal structure of a circuit in a semantic

preserving manner. The obfuscating algorithm makes unique

pseudorandom and deterministic choices in performing the

structural change for a given number of iterations. Iteration

count determines the overall run-time of the algorithm based

on transformation techniques that are chosen by the

obfuscator. We consider the effect of how much randomness

or determinism is needed to produce hiding properties of

interest. For this paper, two properties are in view: signal and

component hiding.

 3

D. Signal Hiding

Reverse engineering adversaries consider the value of

signals within a circuit to establish key control flow and to

establish component boundaries. To measure the effect of

hiding in polymorphic variants, we ask the question ―Do the

original internal signals of the circuit C exist in a variant C’?‖

We acquire this metric primarily by analyzing truth-table

values for every gate in both the original and variant circuit. In

order to measure signals for large circuits, we must choose a

reduced input size vector set must. Controllability and

observability are well studied historical research areas [10]

with the goal of finding the most suitable input vectors for

testing and equivalence checking of large Boolean circuits. We

can therefore measure signal hiding using reduced-size input

vector sets that are produced by controllability analysis. For

full signal hiding verification, we only consider circuits with

reasonable input size.

E. Component Hiding

A combinational logic circuit C can be decomposed into a

smaller set of combinational subcircuits s = {s1 , s2, …, sn}

that are used individually to compute smaller functions.

Typically, such components are well known and defined as

well being implemented with the same gate structures. Typical

component identification algorithms involve 1) finding some

subcircuit sident with the same input/output flow as a known

circuit sknown; 2) validating the semantics of sknown and sident are

equivalent. Given a set of known components, the reverse

engineer would identify the intent of C from the topology

relationships between components within of C. In one sense,

component identification is an extension to signal

identification because components have distinctive outputs

based on their respective functions. Since outputs of any given

component come from the set of all signals within C, it follows

that component hiding builds upon the ability to hide signals.

For measuring component hiding, we ask ―Do the original

component boundaries in C exist in a variant C’?‖ More

properly, ―Are there structures within the variant C’ that map

to known component input/output relationships in the original

C?‖ To compute this metric we use a Java-based

implementation [11] of the White algorithm described in [9].

F. Efficiency

We consider efficiency of various polymorphic obfuscation

algorithms along the lines of speed and power/area of

candidate circuit variants. Algorithm runtime of the

obfuscator itself also bears on efficiency. Level count

measures the largest number of hierarchical levels between

inputs and output within a circuit and reflects increased

computation delay/speed when level size is increased. Gate

count is the number of logic gates within a circuit and reflects

increased power consumption, space, and analysis space for

the adversary. We compare metrics based on gate size (speed)

and level count (power/area) when comparing different

techniques for producing variants.

III. TRANSFORMATION TECHNIQUES

For brevity, we present high level overviews for four

different obfuscating algorithms. The basic transformation

engine we use operates on a simple algorithm that takes

circuits from a set of all possible combinational logic circuits,

Ω, based on a basis set Ω. We define our general obfuscating

algorithm, O(C) = C’, as:

 Given a circuit C  Ω, let C0 = C

 FOR i = 0 to z:

1) SELECT a set of gates Gi as a subcircuit within Ci and

let fGi represent its function

2) REPLACE subcircuit Gi with a version Gi+1 such that

x: fGi(x) = fGi+1(x)

3) REMOVE subcircuit Gi from Ci and replace with Gi+1

4) let Ci+1 = Ci

In this general algorithm, z represents an upper bound of

iterations that provide a time-constraint or a goal-constraint for

the obfuscator. For example, the algorithm may finish when it

achieves the goal of replacing all original gates at least once.

The particular methods in which we choose subcircuits

(SELECT) and find a suitable replacement (REPLACE/

REMOVE) form the basis of algorithm comparison.

A. Pseudorandom Selection and Replacement (SSR)

Original work [12] with our polymorphic engine strived to

maximize randomness in the obfuscator. We based

pseudorandom algorithms on different options which governed

the selection of up to x number of gates. For each iteration of

the algorithm, we choose a different selection strategy

randomly or use some single strategy to evaluate its efficacy.

We let selection size of the chosen subcircuit (x) range from 1

to 4 gates and we choose gates in the subcircuit based on 1)

level within the circuit (random, largest, fixed, or output

level); 2) random choices for all gates; 3) random choices for

all gates from within an updateable subset (i.e., gates not

chosen yet); 4) gates with a specified metric such as maximum

fan-out; or 5) gates part of identified component boundaries.

X-Y SSR refers to X gate selection and Y gate replacement.

To maximize randomness in the replacement, a selected

subcircuit Gi forms a functional family based on fGi. We let

the size of the replacement subcircuit Gi+1 vary between 0 to 2

gate sizes larger than Gi. Once we choose a gate size of the

replacement subcircuit, we query a static library of all possible

circuits with the same input/output/gate size and choose a

uniform, random replacement from the subset of circuits that

have the function fGi. We generate static libraries out of band

and note that such libraries produce maximum randomness for

the obfuscator at the expense of disk space and construction

time beforehand. Because we use all possible circuit

combinations, the circuit family size grows on an exponential

order. On empirical observation, we find that using a 6-gate

basis set Ω results in library sizes that match the integer series

A000366 multiplied by 6
g-1

, where g is gate size. Interesting

hiding properties emerge for larger selection and replacement

 4

sizes, unfortunately limiting the utility of truly random-based

selection and replacement. To expand the nature of

polymorphic variation, we consider also deterministic methods

of selection and replacement.

B. Deterministic Boundary Blurring

Boundary blurring [11] is based on targeting output gates of

known components that are part of an original circuit C. The

algorithm requires that a partitioned set of gates be defined for

circuit C that represents original components. For each

iteration of the obfuscator, a component gi and an output gate

of the component is chosen, gorig. The algorithm changes the

gate type of gorig randomly, and, at some w number of levels

closer to the output of the circuit, the algorithm chooses a

recovery gate grec. The algorithm then implements one of two

versions of the blur: 1) multi-level blurring generates new

combinational logic using the originals signals of the two

selected gates gorig and grec.; 2) don’t care blurs generate new

combination logic depending on signals randomly chosen from

other locations within the circuit. Once the combinational

logic is built, gorig and all gates between it and grec are replaced

with the new logic. By choosing recovery gates outside of a

component boundary, the blur allows for original component

configurations to be modified while still maintaining overall

circuit semantics.

C. Deterministic Component Fusion

Component fusion [13] ensures replacement of the entire

circuit during every iteration of the algorithm. It accomplishes

this by partitioning the circuit into subcircuits and then targets

hiding of known information based on original component

definitions. We describe the component fusion algorithm as

follows:

 Given a circuit C  Ω, let C0 = C

 Let G = the gate set of C and let GUNUSED = 

 Let M = {m1, m2, m3, …, mp}, a component set of C

 REPEAT

1) SELECT a component mi  M

2) PARTITION unused gates into connected subcircuits

to produce component mi’

3) MERGE component mi’ into Ci and add any changed

gates to GUNUSED

4) let Ci+1 = Ci

 UNTIL GUNUSED = G

 Component fusion uses random choices during the

SELECT and PARTITION operations, guaranteeing that the

obfuscator produces unique variants. PARTITION produces a

subcircuit that forms the basis for replacement used by the

MERGE operation. MERGE uses a deterministic approach to

create a replacement by: 1) choosing a random gate basis Ω; 2)

choosing a random Product of Sum/Sum of Products canonical

form; and 3) applying ESPRESSO’s Quine McCluskey

algorithm to logically reduce the component mi’.

D. Deterministic Component Encryption

Component encryption targets specific components for

protection directly and does not concern itself with other gates

within the circuit. For each iteration, this method targets the

wires and signals that join two components. It semantically

changes the components themselves, but leaves the overall

functionality of the circuit intact. The notion of component

encryption comes from [14] where the overall semantics of

circuits with small input sizes may be fully protected by

concatenating an encryption or permutation cipher to the

output of the original circuit. In this form, the obfuscator O

takes P with small input size and produces a variant P’ such

that x: P’(x) = EK(P(x)).The modified variant is synthesized

using a standard Quine McCluskey reduction. Fig. 3 illustrates

the selection of two components and the additional of an

encryption and decryption component between them.

Fig. 3. Component Encryption of Two Selected Components

The component encryption algorithm works by reading a

circuit description C and its associated component definition

set M. Certain gates are not eligible to be encrypted using this

approach and the algorithm groups those that are eligible into a

candidate set of signals. The algorithm then generates

encoding and decoding functions for these internal signals and

produces new components. Once new combinational logic is

inserted to reconnect new components, the algorithm selects

the next set of candidate signals. Fig. 3 illustrates a one-to-

many mapping for signals to their encoded values which is

then used for decoding. Mappings are unique for every

iteration of the component encryption process.

IV. EXPERIMENTAL RESULTS

To analyze security and efficiency of these four algorithms,

we create test cases based on three different candidate circuits:

1) c6288 16-bit multiplier, which contains a large number of

identical components: 16 half-adders and 224 full-adders; 2)

c264 4-bit multiplier with same components as c6288 on

smaller scale: 4 half-adder and 8 full-adders; and 3) a

polymorphic full-adder circuit with 5 4-input/1-output

multiplexors composed of 15 2-input/1-output multiplexors.

These circuits have distinguishing features which allow

efficient component identification using the White algorithm

[9]. We generated 50 variants of each test case circuit using all

four algorithms and then applied security and efficiency

metrics to compute an average. We also verified the functional

 5

equivalence of all generated circuit variants created by the four

different algorithms. Fig. 4 illustrates our results for signal

hiding based on truth table analysis metrics and percentage of

original circuit signals hidden. Fig. 5 represents the perceived

component hiding based on negative component identification

metrics (100% means no original components were identified).

Fig 6. illustrates our results for efficiency analysis based on the

gate size and number of levels in variants and the algorithm

runtime in seconds.

Fig. 4. Variant signal hiding per algorithm.

Fig. 5. Component hiding per algorithm for (a) c6288 variants, (b) c264

variants, and (c) polymorphic full-adder

Fig. 6. Efficiency per algorithm based on (a) average gate size per variant,

(b) average level size per variant, and (c) obfuscator runtime per variant

V. CONCLUSIONS AND FUTURE WORK

Based on experimental results, we observe that component

encryption has the fastest runtime of the four algorithms and

produces better signal hiding results than boundary blurring.

Component fusion also produces better hiding than blur or

random selection/replacement based on component

identification metrics. In some cases, boundary blurring

accomplishes no signal hiding and random

selection/replacement with 2-gate selection and 3 or 4 gate

replacement provides poor signal hiding and worst-case

increases in level size. No algorithm accomplished full signal

hiding and all algorithms produced some component hiding

based on results of running a component identification tool.

We demonstrate that efficiency can be maintained using some

algorithms (component fusion and encryption) within

reasonable bounds while frustrating efforts of reverse

engineering adversaries.

Future work will seek to understand the effect of varying all

four techniques on the same circuit on both efficiency and

security metrics with expanding metrics to other algorithms

and implementations. Other circuits with additional

component configurations will be in view for future

experiments. Research on component identification and

recovery has moved toward large-scale Boolean matching [15]

which seeks to determine whether two Boolean functions are

semantically equivalent when inputs and outputs are reordered

or negated. Future work will involve utilizing Boolean

matching tools as an adversarial component identification

analysis technique for comparative purposes.

REFERENCES

[1] K. Nohl, D. Evans, S. Pltz, and H. Pltz, ―Reverse- Engineering a

Cryptographic RFID Tag,‖ USENIX Security Symposium, July 2008.

[2] D. Koeppel, ―China’s iClone ,‖ Popular Science, August, 2007. URL:

http://www.popsci.com/iclone

[3] Select Committee on U.S. National Security, ―HOUSE REPORT

105-851 Chapter 1: PRC Acquisition of U.S. Technology‖,

January 1999, URL: http://www.gpo.gov/congress/house/hr105851-

html/ch1bod.html.

[4] E. Chikofsky and J. Cross II, ―Reverse engineering and design recovery:

a taxonomy,‖ IEEE Software, 7(1):13–17, Jan 1990.

[5] B. Barak, O. Goldreich, et al., ―On the (im)possibility of obfuscating

programs,‖ Proc. of CRYPTO ’01, Aug 2001, 1–18.

[6] N. Ding and D. Gu, ―A general and efficient obfuscation for programs

with tamper-proof hardware,‖ Proceedings of ISPEC'11, Feng Bao and

Jian Weng (Eds.). Springer-Verlag, Berlin, Heidelberg, 401-416.

[7] S. Goldwasser and G. Rothblum, ―On best-possible obfuscation,‖ LNCS

4392, TCC 2007, Springer-Verlag, (21-24 Feb 2007), 194–213.

[8] N. Wirth, ―Hardware Compilation: Translating Programs into Circuits,‖

IEEE Computer, 31(6):25–31, June, 1998.

[9] J. White, A.Wojcik, et al., ―Candidate sub-circuits for functional

module identification in logic circuits,‖ Proc. of the 10th Great Lakes

Symposium on VLSI (2000), Chicago, IL, 34–38.

[10] L. H. Goldstein, ―Controllability / observability analysis of digital

circuits,‖ IEEE Trans on Circuits and Systems, CAS-26(9):685–693,

September 1979.

[11] J. Parham, Y. Kim, et al., ―Hiding Circuit Components Using Boundary

Blurring Techniques,‖ Proc. of IEEE Annual Symposium on VLSI, (Jul.

5-7, 2010), Cephalonia, Greece.

[12] J. McDonald, Y. Kim, and M. Grimaila, ―Protecting Reprogrammable

Hardware with Polymorphic Circuit Variation,‖ Proc. of the 2nd Cyber

Research Wrkshp (June 2009), Shreveport, LA.

[13] J. McDonald, Y. Kim, and D. Koranek, ―Deterministic Circuit Variation

for Anti-Tamper Applications,‖ to appear, Proc. of 7th Annual CSIIRW

(12—14 Oct, 2011), Oak Ridge, TN.

[14] J. McDonald and A. Yasinsac, ―Program intent protection using circuit

encryption,‖ Proc of the 8th Intl Symposium on System and Information

Security, IEEE Computer Society, 8-10 Nov 2006.

[15] H. Katebi and I. Markov, ―Large-scale Boolean matching,‖ Design,

Automation & Test in Europe (8-12 Mar 2010), 771—776.

