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 

Abstract—Security for Cyber physical systems includes not 

only guaranteeing operational security of data they process, but 

preventing malicious alteration of their execution due to 

knowledge of their underlying structure.  With the advent of 

software in the form of reprogrammable hardware descriptions, 

protection of field programmable units from malicious reverse 

engineering and subversion becomes more critical.  We compare 

four different white-box transformation algorithms aimed at 

hindering adversarial reverse engineering by changing 

component and signal configurations within combinational logic 

programs.  We present security and efficiency analysis for these 

techniques and show positive results for achieving measurable 

hiding of signal and component information.  

 
Index Terms—Circuit Analysis, Combinational Circuits, 

Programmable Logic Devices, Computer Hacking, Computer 

Security.  

 

I. INTRODUCTION 

OMPUTING technology embodied in both hardware 

circuitry and software represents a significant portion of 

both military and commercial development budgets. 

Adversaries target design understanding for this technology to 

find exploitable flaws, manipulate control for nefarious 

purposes, or clone system components for other uses. While 

cryptography provides adequate protection for data security, 

protection of design information inherent in programmatic 

specifications is not as firm.  Nohl et al. [1], for example, 

showed the relative ease of reverse engineering the Milfare 

Classic RFID tag based on gate structure analysis in order to 

compromise cipher implementations. Popular hardware such 

as the Apple iPhone are sold at reduced versions overseas 

because cloning of underlying intellectual property can be 
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accomplished [2]. In general, it can be much more economical 

for a foreign government to reverse engineer existing 

technology rather than procure a similar product from scratch 

[3].  Chikofsky and Cross [4] define reverse engineering as an 

analysis task of a subject system that creates equivalent 

representations at higher abstraction levels. Though industry 

and military analysts use reverse engineering to recover lost 

design information for legal, economical, and defensive 

purposes, we consider its nefarious use for malicious purposes. 

We report results in this paper on techniques that involve 

combinatorial circuit designs. Namely, can we generate 

variants of such logic programs which convey less information 

about a circuit’s original function and structure so that an 

adversaries ability to reverse engineer the circuit is 

significantly degraded?  Algorithms that create variants are 

commonly known as obfuscators and theoretical study of 

obfuscation has received much attention over the last decade 

[5]–[7].  Given the theoretical impossibility of producing a 

circuit variant that hides all information leakage relative to an 

original circuit (other than its black-box behavior), we 

consider efficient obfuscation algorithms that produce 

semantically equivalent versions of circuits where the 

elimination of some functional information or some structural 

information can be empirically measured.     

To discuss our finding, Section II introduces the scope of 

our obfuscation study and defines security based on functional 

and structural hiding related to component identification. 

Section III defines four different methods for achieving 

component hiding that can deter a malicious reverse engineer. 

Section IV presents empirical results using these methods on 

sample combinational logic programs. Section V summarizes 

our results and gives point for future work. 

II. VARIATION AND CIRCUIT PROTECTION 

A. Defining Circuits, Signals, and Components 

We consider combinational logic programs and the effect of 

structural changes at the syntactic/gate level where semantics 

of the overall circuit are preserved.  Combinational logic 

represents a large class of software constructs where straight-

line logic is involved.  Sequential logic represents the more 

robust category of programmatic logic seen in traditional 

software where looping constructs are allowed; translation 

between high level languages and general circuitry provides 
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correlation of results using either software or hardware-based 

program descriptions [8].  We motivate our study of hiding 

properties using combinational logic for two reasons: 1) 

reverse engineering of circuits occurs frequently at the gate or 

ASIC level where combinatorial logic is prevalent; and 2)    

sequential circuits may be decomposed into combinational 

components for analysis and synthesis, separating state and 

memory decisions from allocation of basic building blocks.  

For simplicity, we define a circuit as a directed, acyclic 

graph D(V,E) of inputs, logic gates, and outputs where 1) V  

describes a set of nodes (or vertices) representing logic gates 

and 2) E represents the set of edges representing wires 

connecting the output of some logic gate (or an input to the 

circuit) to the input of some other logic gate (or an output of 

the circuit).  We define a subcircuit as a subgraph of some 

circuit C.  The logic gates themselves map to known Boolean 

functions in a given basis set Ω such as Ω  {AND, OR, XOR, 

NAND, NOR, XNOR}.  We may represent circuit semantics as 

a Boolean function, fC:{0,1}
n
→{0,1}

m
, where n is the input 

size and m is the output size in bits.  

Enumerating the full truth-table (a collection of all possible 

input/output pairs for a circuit) remains infeasible for most 

circuits because of the exponential (2
n
) blow-up.  Fig. 1 

illustrates the truth-table for a 3-input, 2-output NOR-gate full-

adder circuit.  We define a signal as the truth table value for an 

intermediate gate within the graph of circuit. In Fig. 1, gates 

4–10 are intermediate gates and their possible values form a 

truth-table (column) based on possible inputs and propagation 

of predecessor values.  The signals of output gates (Sum, Cout 

as seen in Fig. 1), when associated with their respective inputs, 

create the semantics of the entire circuit. Fig. 2 illustrates the 

full-adder circuit and its corresponding signal values. 

In order to discuss component properties, we define a 

candidate component based on White’s definition [9] as a 

specified subcircuit which is fully specified, fully contained, or 

both.  White’s algorithm on subcircuit enumeration and 

identification forms the basis for our empirical study on 

component hiding.  As a more suitable extension to this 

definition, we define a component as a subgraph with a 

specific input/output pattern whose semantics (truth table 

input/output mapping) are known.  

 

 
 

Fig. 1.  Truth-table for 9-gate, NOR full-adder: n = 3, m = 2 

B. Analysis Activities 

In considering the goals of a reverse-engineering adversary, 

we make several educated assumptions about the strategies 

used to recover higher level design specifications of a circuit. 

We assume that a reverse-engineering adversary can perform 

black-box analysis on a circuit C by applying values to its n 

input gates and observing values of its m output gates, which is 

to say, they have oracle access to C.  Because full truth-table 

analysis remains intractable for large input circuits (n > 50), 

we assume that adversaries are driven to combined analysis 

that looks at white-box topology and various gate signals. 

 

 
 
Fig. 2.  NOR full-adder circuit topology and signal values 

 

Because reverse engineers are particularly interested in the 

white-box information leaked by a circuit, we assume an 

adversary driven to white-box analysis attempts to identify 

components and the communication (signals and wiring) 

between them as their primary method to attain a higher-level 

circuit abstraction.  

C. Semantic Preserving Polymorphic White-Box Variation 

An obfuscator O is a polynomial-time algorithm that takes 

as input circuit C and returns a semantically equivalent version 

C’. Obfuscators produce a distribution of circuit variants that 

are functionally equivalent to a given C; we analyze variants in 

the distributions empirically on the basis of whether a variant 

exhibits a hiding property of interest. Variants are polymorphic 

by nature because they represent alternative forms of an 

original.  We consider obfuscating algorithms that iteratively 

change the internal structure of a circuit in a semantic 

preserving manner.  The obfuscating algorithm makes unique 

pseudorandom and deterministic choices in performing the 

structural change for a given number of iterations. Iteration 

count determines the overall run-time of the algorithm based 

on transformation techniques that are chosen by the 

obfuscator. We consider the effect of how much randomness 

or determinism is needed to produce hiding properties of 

interest.  For this paper, two properties are in view: signal and 

component hiding. 
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D. Signal Hiding 

Reverse engineering adversaries consider the value of 

signals within a circuit to establish key control flow and to 

establish component boundaries.  To measure the effect of 

hiding in polymorphic variants, we ask the question ―Do the 

original internal signals of the circuit C exist in a variant C’?‖ 

We acquire this metric primarily by analyzing truth-table 

values for every gate in both the original and variant circuit. In 

order to measure signals for large circuits, we must choose a 

reduced input size vector set must.  Controllability and 

observability are well studied historical research areas [10] 

with the goal of finding the most suitable input vectors for 

testing and equivalence checking of large Boolean circuits. We 

can therefore measure signal hiding using reduced-size input 

vector sets that are produced by controllability analysis. For 

full signal hiding verification, we only consider circuits with 

reasonable input size.   

E. Component Hiding 

A combinational logic circuit C can be decomposed into a 

smaller set of combinational subcircuits s = {s1 , s2, …,  sn} 

that are used individually to compute smaller functions.  

Typically, such components are well known and defined as 

well being implemented with the same gate structures.  Typical 

component identification algorithms involve 1) finding some 

subcircuit sident with the same input/output flow as a known 

circuit sknown;   2) validating the semantics of sknown and sident are 

equivalent. Given a set of known components, the reverse 

engineer would identify the intent of C from the topology 

relationships between components within of C.  In one sense, 

component identification is an extension to signal 

identification because components have distinctive outputs 

based on their respective functions.  Since outputs of any given 

component come from the set of all signals within C, it follows 

that component hiding builds upon the ability to hide signals. 

For measuring component hiding, we ask ―Do the original 

component boundaries in C exist in a variant C’?‖  More 

properly, ―Are there structures within the variant C’ that map 

to known component input/output relationships in the original 

C?‖ To compute this metric we use a Java-based 

implementation [11] of the White algorithm described in [9]. 

F. Efficiency 

We consider efficiency of various polymorphic obfuscation 

algorithms along the lines of speed and power/area of 

candidate circuit variants.  Algorithm runtime of the 

obfuscator itself also bears on efficiency. Level count 

measures the largest number of hierarchical levels between 

inputs and output within a circuit and reflects increased 

computation delay/speed when level size is increased.  Gate 

count is the number of logic gates within a circuit and reflects 

increased power consumption, space, and analysis space for 

the adversary.  We compare metrics based on gate size (speed) 

and level count (power/area) when comparing different 

techniques for producing variants. 

III. TRANSFORMATION TECHNIQUES 

For brevity, we present high level overviews for four 

different obfuscating algorithms.  The basic transformation 

engine we use operates on a simple algorithm that takes 

circuits from a set of all possible combinational logic circuits, 

Ω, based on a basis set Ω. We define our general obfuscating 

algorithm, O(C) = C’, as: 

   Given a circuit C  Ω, let C0 = C 

   FOR i = 0 to z: 

1) SELECT a set of gates Gi as a subcircuit within Ci and 

let fGi represent its function 

2) REPLACE subcircuit Gi with a version Gi+1 such that 

x: fGi(x) = fGi+1(x) 

3) REMOVE subcircuit Gi from Ci and replace with Gi+1 

4) let Ci+1 = Ci 

In this general algorithm, z represents an upper bound of 

iterations that provide a time-constraint or a goal-constraint for 

the obfuscator. For example, the algorithm may finish when it 

achieves the goal of replacing all original gates at least once. 

The particular methods in which we choose subcircuits 

(SELECT) and find a suitable replacement (REPLACE/ 

REMOVE) form the basis of algorithm comparison. 

A. Pseudorandom Selection and Replacement (SSR) 

Original work [12] with our polymorphic engine strived to 

maximize randomness in the obfuscator. We based 

pseudorandom algorithms on different options which governed 

the selection of up to x number of gates.  For each iteration of 

the algorithm, we choose a different selection strategy 

randomly or use some single strategy to evaluate its efficacy.  

We let selection size of the chosen subcircuit (x) range from 1 

to 4 gates and we choose gates in the subcircuit based on 1) 

level within the circuit (random, largest, fixed, or output 

level); 2) random choices for all gates; 3) random choices for 

all gates from within an updateable subset (i.e.,  gates not 

chosen yet); 4) gates with a specified metric such as maximum 

fan-out; or 5) gates part of identified component boundaries.  

X-Y SSR refers to X gate selection and Y gate replacement. 

To maximize randomness in the replacement, a selected 

subcircuit Gi forms a functional family based on fGi.  We let 

the size of the replacement subcircuit Gi+1 vary between 0 to 2 

gate sizes larger than Gi.  Once we choose a gate size of the 

replacement subcircuit, we query a static library of all possible 

circuits with the same input/output/gate size and choose a 

uniform, random replacement from the subset of circuits that 

have the function fGi.  We generate static libraries out of band 

and note that such libraries produce maximum randomness for 

the obfuscator at the expense of disk space and construction 

time beforehand. Because we use all possible circuit 

combinations, the circuit family size grows on an exponential 

order. On empirical observation, we find that using a 6-gate 

basis set Ω results in library sizes that match the integer series 

A000366 multiplied by 6
g-1

, where g is gate size. Interesting 

hiding properties emerge for larger selection and replacement 
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sizes, unfortunately limiting the utility of truly random-based 

selection and replacement. To expand the nature of 

polymorphic variation, we consider also deterministic methods 

of selection and replacement.  

B. Deterministic Boundary Blurring 

Boundary blurring [11] is based on targeting output gates of 

known components that are part of an original circuit C.  The 

algorithm requires that a partitioned set of gates be defined for 

circuit C that represents original components. For each 

iteration of the obfuscator, a component gi and an output gate 

of the component is chosen, gorig. The algorithm changes the 

gate type of gorig randomly, and, at some w number of levels 

closer to the output of the circuit, the algorithm chooses a 

recovery gate grec.  The algorithm then implements one of two 

versions of the blur: 1) multi-level blurring generates new 

combinational logic using the originals signals of the two 

selected gates gorig and grec.; 2) don’t care blurs generate new 

combination logic depending on signals randomly chosen from 

other locations within the circuit.  Once the combinational 

logic is built, gorig and all gates between it and grec are replaced 

with the new logic. By choosing recovery gates outside of a 

component boundary, the blur allows for original component 

configurations to be modified while still maintaining overall 

circuit semantics.  

C. Deterministic Component Fusion 

Component fusion [13] ensures replacement of the entire 

circuit during every iteration of the algorithm.  It accomplishes 

this by partitioning the circuit into subcircuits and then targets 

hiding of known information based on original component 

definitions.  We describe the component fusion algorithm as 

follows:  

    Given a circuit C  Ω, let C0 = C 

    Let G = the gate set of C and let GUNUSED  =  

    Let M = {m1, m2, m3, …, mp}, a component set of C     

    REPEAT  

1) SELECT a component mi  M 

2) PARTITION unused gates into connected subcircuits 

to produce component mi’ 

3) MERGE component mi’ into Ci and add any changed 

gates to GUNUSED 

4) let Ci+1 = Ci 

    UNTIL GUNUSED = G 

 Component fusion uses random choices during the 

SELECT and PARTITION operations, guaranteeing that the 

obfuscator produces unique variants.  PARTITION produces a 

subcircuit that forms the basis for replacement used by the 

MERGE operation. MERGE uses a deterministic approach to 

create a replacement by: 1) choosing a random gate basis Ω; 2) 

choosing a random Product of Sum/Sum of Products canonical 

form; and 3) applying ESPRESSO’s Quine McCluskey 

algorithm to logically reduce the component  mi’. 

D. Deterministic Component Encryption 

Component encryption targets specific components for 

protection directly and does not concern itself with other gates 

within the circuit.  For each iteration, this method targets the 

wires and signals that join two components. It semantically 

changes the components themselves, but leaves the overall 

functionality of the circuit intact.  The notion of component 

encryption comes from [14] where the overall semantics of 

circuits with small input sizes may be fully protected by 

concatenating an encryption or permutation cipher to the 

output of the original circuit.  In this form, the obfuscator O 

takes P with small input size and produces a variant P’ such 

that x: P’(x) = EK(P(x)).The modified variant is synthesized 

using a standard Quine McCluskey reduction. Fig. 3 illustrates 

the selection of two components and the additional of an 

encryption and decryption component between them. 

 
Fig. 3.  Component Encryption of Two Selected Components 

 

The component encryption algorithm works by reading a 

circuit description C and its associated component definition 

set M. Certain gates are not eligible to be encrypted using this 

approach and the algorithm groups those that are eligible into a 

candidate set of signals.  The algorithm then generates 

encoding and decoding functions for these internal signals and 

produces new components. Once new combinational logic is 

inserted to reconnect new components, the algorithm selects 

the next set of candidate signals.  Fig. 3 illustrates a one-to-

many mapping for signals to their encoded values which is 

then used for decoding.  Mappings are unique for every 

iteration of the component encryption process.  

IV. EXPERIMENTAL RESULTS 

To analyze security and efficiency of these four algorithms, 

we create test cases based on three different candidate circuits: 

1) c6288 16-bit multiplier, which contains a large number of 

identical components: 16 half-adders and 224 full-adders; 2) 

c264 4-bit multiplier with same components as c6288 on 

smaller scale: 4 half-adder and 8 full-adders; and 3) a 

polymorphic full-adder circuit with 5 4-input/1-output 

multiplexors composed of 15 2-input/1-output multiplexors.  

These circuits have distinguishing features which allow 

efficient component identification using the White algorithm 

[9]. We generated 50 variants of each test case circuit using all 

four algorithms and then applied security and efficiency 

metrics to compute an average. We also verified the functional 
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equivalence of all generated circuit variants created by the four 

different algorithms.  Fig. 4 illustrates our results for signal 

hiding based on truth table analysis metrics and percentage of 

original circuit signals hidden.  Fig. 5 represents the perceived 

component hiding based on negative component identification 

metrics (100% means no original components were identified).  

Fig 6. illustrates our results for efficiency analysis based on the 

gate size and number of levels in variants and the algorithm 

runtime in seconds. 

 

 
Fig. 4.  Variant signal hiding per algorithm. 

 

 
Fig. 5.  Component hiding per algorithm for (a) c6288 variants, (b) c264 

variants, and (c) polymorphic full-adder 

 

 
 

Fig. 6.  Efficiency per algorithm based on (a) average gate size per variant, 

(b) average level size per variant, and (c) obfuscator runtime per variant 

 

V. CONCLUSIONS AND FUTURE WORK 

Based on experimental results, we observe that component 

encryption has the fastest runtime of the four algorithms and 

produces better signal hiding results than boundary blurring.  

Component fusion also produces better hiding than blur or 

random selection/replacement based on component 

identification metrics.  In some cases, boundary blurring 

accomplishes no signal hiding and random 

selection/replacement with 2-gate selection and 3 or 4 gate 

replacement provides poor signal hiding and worst-case 

increases in level size.  No algorithm accomplished full signal 

hiding and all algorithms produced some component hiding 

based on results of running a component identification tool. 

We demonstrate that efficiency can be maintained using some 

algorithms (component fusion and encryption) within 

reasonable bounds while frustrating efforts of reverse 

engineering adversaries. 

Future work will seek to understand the effect of varying all 

four techniques on the same circuit on both efficiency and 

security metrics with expanding metrics to other algorithms 

and implementations.  Other circuits with additional 

component configurations will be in view for future 

experiments.  Research on component identification and 

recovery has moved toward large-scale Boolean matching [15] 

which seeks to determine whether two Boolean functions are 

semantically equivalent when inputs and outputs are reordered 

or negated.  Future work will involve utilizing Boolean 

matching tools as an adversarial component identification 

analysis technique for comparative purposes. 
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