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Abstract
 

Most instances of software exploitation are really 
software failure. Even though we cannot eliminate 
vulnerability from modern information systems, we 
can reduce exploitable code long term with sound, 
robust development practices. We argue that the 
current hot topic of so-called "secure coding" 
represents commonly taught coding techniques that 
ensure robustness, rather than ensuring any 
commonly understood concept of security. Weaving 
the practice of rigorous coding techniques into 
curriculum is essential—coding for security is useless 
apart from fault-tolerant foundations. However, 
security-specific coding techniques need to be 
integrated pedagogically alongside robustness so that 
students can differentiate the two. We propose in this 
paper a shift in instructional methods based on this 
distinction to help future programmers, developers, 
and software engineers produce “security-aware” 
software.1 2 

. 
1. Introduction 
 

As the saying goes, the best defense is a good 
offense.  Defensive coding practices, which are 
termed by many as “secure coding” [1,2], are 
intended to counter the growing threat of software 
vulnerability exploitation.  Buffer overflows [3,4] 
have been a hot topic of secure coding because they 
remain commonplace in diverse attack schemes where 
malicious code is injected and then executed on a 
victim system.  As Hogland and McGraw state, buffer 
overflows are the “whipping boy of software security” 
because of all the hype and fear they generate [5].  
Fixes to buffer overflow problems emerge in system 
after system, usually after the fact and usually 
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addressing only symptoms of a greater problem in 
code design and implementation. 

While these fixes are labeled "security patches", 
they are actually less related to security than they are 
to poor programming practice. Many programming 
errors can result in security vulnerability. Buffer 
overflows occur because programmers do not follow 
well-known programming practices, resulting in 
software delivered with unresolved faults. Buffer 
overflow repair has little to do with security of the 
application being repaired. Most buffer overflow 
exploits use program flaws to gain access privileges 
they would otherwise not have, though the resulting 
mischief or malice are rarely directed at the 
vulnerable application itself. 

So, what is termed software exploitation currently 
is merely a veiled manifestation of software failure.  
We can view security under the larger umbrella of 
software assurance—which covers failure from both 
malicious and non-malicious interactions.  Whether 
failure comes from execution of unintentionally 
buggy programs or the malicious exploitation of a 
weakness inherent in code—software faults cause loss 
of productivity and, subsequently, loss of revenue.  

A primary goal of software assurance is to 
engineer robustness from the ground up.  From the 
robustness perspective, problems identified as 
security flaws can be seen more as problems 
stemming from poor programming practice than from 
a security threat. Without laying a proper foundation 
in good fault tolerant coding practices, integrating 
security goals into software has little value. 

We propose a needed paradigm shift in educational 
environments that delineates and reinforces principles 
of robust and secure coding. Though distinct 
pedagogic concepts, security builds squarely upon 
robustness and both should be strategically 
incorporated into computer science curriculums.  
Strengthening the foundation of what and how we 
teach future programmers about robust practices will 
provide a necessary foundation to incorporate security 
specific goals. 



In section 2, we build our argument by considering 
necessary curriculum changes that highlight security-
aware programming in both professional practice and 
educational patterns. In section 3 we address concepts 
that will build foundational support for robust coding.  
Section 4 details knowledge areas that are needed for 
security-specific requirements themselves.  Section 5 
gives our conclusions and summary of contribution. 
 
2. Teaching security-aware programming 
 

Hogland and McGraw [5] assert that “bad” 
software is the root of the security problem—and 
others agree security problems can only be fixed by 
building robust and survivable software.  In order to 
influence the next generation of programmers toward 
security awareness, we believe that educational 
programs must teach the proper relationship and 
distinction between robust and secure coding 
practices. In professional practice, work to integrate 
security into software systems is well underway.  We 
use process level maturity as a means to introduce our 
suggested patterns for education. 
 
2.1. Classifying robustness 
 

The systems security engineering capability 
maturity model (SSE-CMM)3 was launched in the late 
1990’s to address the need for holistic integration of 
security in the software development lifecycle [6].  
The SSE-CMM provides a framework to reason about 
security needs, guidance, vulnerabilities, assessments, 
and effectiveness of security mechanisms themselves.   

McGraw states that to practice good software 
security you must leverage good software engineering 
practices and start early in the development life cycle 
[7]. Higher level managers such as chief information 
officers, administrators, and infrastructure planners 
have begun to see the value of integrating security 
into the entire lifecycle development process instead 
of dealing with it as an afterthought [8, 9].  In terms 
of education, specific techniques for coding need to 
be presented and taught in the light of CMM-related 
lifecycle concepts and security-related processes—
early and as often as possible. 

The amount of rigor a professional development 
organization puts into its software process is tied to 
the nature of the computer programs they develop.  
We consider three notional levels of rigor that are 
logically tied to a likely organizational level of 
capability and process level maturity (CMM level). 
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2.1.1. Disposable software. At the lowest level of 
required rigor, disposable software is “here today and 
gone tomorrow”.  Such programs gain less benefit 
from maintenance or lifecycle cost assessment.  They 
are written to get a specific job done in a short amount 
of time—with no view for long term use. Robust 
coding practices can still be of benefit at this level 
(especially when short-term usage assumptions are 
wrong), but the primary focus of the system is on-
time delivery or features—not necessarily quality. 

 
2.1.2. Non-disposable software. While disposable 
software can be produced by any CMM-level 1 
organization, most software systems are developed 
with expected longer term use. Rigor should be 
applied based on the budget, customer base, projected 
lifetime, and complexity of the system to be 
developed.  Typical software development 
organizations strive for some level of process maturity 
to sustain non-disposable software development—
striving for CMM-level 2 or 3 maturity to achieve 
minimum success.  

 
2.1.3. Moon-shot software. The highest level of rigor 
we term the “moon-shot” system.  This is software 
that is not only long term and requires organization al 
established discipline for success, but has stringent 
requirements based on safety (human life is at stake), 
monetary value (multiple billions might be at risk), 
large user base, or high maintenance cost factors (a 
satellite sent into space). A fundamental property of 
moon-shot systems is that it is costly or impossible to 
test these systems to the level demanded by the 
application's criticality. 

CMM dictates that organizations with development 
capabilities lower than CMM-level 3 not develop 
moon-shot systems. In fact, moon-shot systems 
represent our desire to use the very best software 
development processes in every lifecycle area. 
Disposable software may not require robust coding 
principles or integration of security requirements—
though using such techniques provide inherent 
benefit. Moon-shot software, by nature, demands the 
highest level of development quality controls.  

Non-disposable is the category where most 
software efforts fall. It is essential that present and 
future programmers understand their role in 
developing non-disposable software that is not only 
functionally correct and efficient, but that is robust 
and designed to prevent faults. Our educational 
environments, the specific quality techniques that are 
taught, and the concepts of development and security 
rigor all help reinforce a security-aware view of 
programming. 
 



2.2. Teaching robustness 
 

Entry level programmers and computer science 
students should be taught the difference between 
disposable software (robustness level 1) and "moon 
shot" (robustness level 3) systems. They should be 
taught mechanisms for development expediency, so 
that prototype and proof of concept implementations 
can be quickly and efficiently built (robustness level 
1). They should also understand the rigor necessary to 
develop critical applications such as embedded 
software in life support, surgical, or weapons systems 
(robustness level 3).  

Presently, instructional emphasis is on robustness 
level 2 systems (all systems that are not level 1 or 
level 3) that classically categorize the majority of all 
information systems. That balance is changing. The 
impact of buffer overflow problems has begun to 
convince developers that systems once considered 
level 2 are actually level 3 simply because errors in 
them can impact other (possibly level 3) applications, 
multiplied by the scale of the Internet.  

There is a natural correlation between the rigor 
partitions in the previous section and standard 
professional programming curriculums. It turns out 
that the lower rigor levels are the most applicable (and 
understandable) to junior, entry level students and 
programmers. Conversely, the higher levels are more 
naturally incorporated into more advanced, theoretic 
programming and security courses. Table 1 depicts 
these robustness levels in terms of appropriate courses 
where these concepts need to be introduced and 
taught.  We consider now the other aspect of security-
aware programming which table 1 depicts: techniques 
that specifically enforce security. 
 
2.3. Classifying software security 
 
Just as categorizing systems allows us to select 
appropriate levels of rigor and robustness, we 
recognized that we may similarly categorize security 
conscious systems, coincidentally, in three levels. 
These levels are hierarchical and cumulative in the 
sense that systems that demand higher level security 
automatically need the lower level techniques. We 
term these techniques as rigorously robust software 
protection, threat protection required, and critical 
systems protection. 

  
2.3.1. General software protection. The first 
security level includes systems that demand rigorous 
robustness guarantees. These are systems that do not 
require any classical security techniques, but where 
malfunction would be catastrophic. A, somewhat 
contrived example of such a system may be software 
the guides delicate instruments used in major organ 

surgery. While this software may execute in a closed 
environment, essentially with no security threat, 
software flaws are a matter of life and death. This 
example is contrived in the sense that it is likely that 
some level of security will be included in such a 
system. The essence of our argument is that software 
that is not "critically" robust, i.e. sufficiently robust 
for even the most high risk system, is not sufficiently 
robust for any security purpose. 

 
2.3.2. Software-specific protection. The second 
security level is for systems with software-specific 
security requirements, such as systems that require 
protection for the data or code for privacy, integrity or 
availability. These systems range from low risk access 
control systems (such as for home network access) to 
medium risk systems where compromise could cause 
significant financial or business impact. 

 
2.3.3. Critical systems protection. Systems that 
contain sensitive information whose compromise may 
result in high impact consequences, such as loss of 
life or significant resources, require level 3 security 
rigor. These systems demand cryptographically strong 
techniques for authentication and access control and 
other strong security practices. 
 
2.4. Teaching security 
 

The software community is gradually 
acknowledging the need to incorporate security often 
and early into the development process—but now the 
educational community must begin to introduce 
robust and secure coding techniques often and early in 
the learning process. In spite of attention given to 
secure coding recently, programming curriculums still 
need to adapt principles of professional software 
practice into class-related objectives and goals. 
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Table 1. Integrating Robustness and Security Rigor 

into Software Development Curriculum 
 



Table 1 summarizes our pedagogy based on 
hierarchical rigor. Several categories of standard 
computer science courses are listed across the top 
rows: entry-level and follow-on programming, data 
structures, software engineering, programming 
languages, and security. For each type of course we 
specify the level of both fault-tolerance and security 
rigor that should be covered in that course.   

For entry-level courses, we recommend giving a 
general and high-level overview of fault-tolerant 
software development concepts across the spectrum 
of quality. In depth study of level two and three 
robustness rigors are addressed in follow-on 
programming courses, data structures, and software 
engineering.  Security related courses address higher 
levels of robustness rigor in the context of other 
software security-related concerns. Programming 
language courses should give thorough examples of 
robustness techniques that support both efficient 
development for disposable software and longer-term 
code maintenance for non-disposable software.  

In terms of instruction on different levels of 
security rigor, follow-on programming courses should 
expose students to the notion of general and -specific 
software security techniques. Software engineering 
should incorporate such foundations in context to the 
overall software lifecycle development plan. Upper 
level programming and security courses should be 
used to cover requirements and techniques for level 
three critical systems rigor and to lay practical 
foundations for using cryptographically strong 
protection mechanisms.   

The next question to deal with is which robustness 
and security techniques to teach in these courses. We 
address this issue in section 3 by detailing sources of 
fault-tolerant vulnerabilities and avoidance techniques 
while we detail in section 4 instructional patterns for 
security-specific coding.  Table 2 summarizes our 
recommendations for course integration of specific 
areas of professional practice discussed in sections 3 
and 4. Instruction on these topics should follow other 
pedagogical lines concerning how to effectively teach 
programming and computer science related material.4 

 
3. Coding for robustness 
 

The cause of many common security faults can be 
traced to lack of software risk avoidance. Robustness, 
defined in [10], is the “degree to which a software 
component functions correctly in the presence of 
exceptional inputs or stressful environmental 
conditions”. Exceptional program execution cases that 
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malicious parties may exceed any notion of what has 
traditionally been considered. Intentionally 
malformed or irrationally long, short, or empty inputs, 
altered program control flow, dynamically linked or 
patched code segments, and memory corruption errors 
are faults that programmers must consider in modern 
applications. 

Educational environments must foster the notion 
that secure programs are first and foremost reliable 
and safe programs. By safe we mean that programs 
clean up after themselves, police their own code and 
data space, and do not assume anything from outside 
their environment without verifying first. It is truly 
the ounce of prevention that far outweighs the “tons” 
of cure later down the road. The programmer's mantra 
that the operating system (or other environmental 
mechanism) clears memory (before or after 
execution), provides containment, protects input 
streams, etc. must be changed.  

The foundations, however, begin with how coding 
is presented above the basic functional and semantic 
levels.  We consider several areas of fault-tolerant 
coding practice and the need for their integration into 
software development education. 
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Defect Patterns x x  x   
Sources of Faults x x x  x  
Testing Methods  x  x x  
Risky Coding   x   x  
Robust Coding 
Techniques x x x x x  
Secure Coding 
Techniques  x x x x x 
Memory-Related 
Vulnerability   x  x x 
Secure Data 
Initialization   x  x x 
Operating System & 
Process Security    x x x 
Template and Pattern 
Programming    x  x 
Tamperproofing    x  x 

Table 2. Integrating Robust and Secure Coding 
Practice into Software Development Curriculum 

 

3.1. Risky defects 
 

Research continues to identify coding weaknesses 
and vulnerabilities that are security related, so-called 
[1,2,5,8,11,12]. By definition, software vulnerability 



is a defect in either design or implementation of 
code—and 90% of vulnerabilities derive from 
exploiting known defect patterns in coding [11]. As 
table 2 depicts, practical defect avoidance by 
identifying failure causes such as defect 
patterns/sources of faults, and teaching appropriate 
remedies, including robust coding techniques, should 
be introduced early in programming coursework. 
 
3.2. Sources of faults 
 

Buffer overflows have been called the “nuclear 
bomb of all software vulnerabilities” [5]. They result 
from programming errors that allow memory to be 
corrupted. When data structures are not properly 
protected, data is written outside of memory 
boundaries.  Once corruption occurs, a wide variety of 
attacks are possible including overwriting critical 
program information, changing global state, removing 
security restrictions, or disabling program controls.   

In programming languages such as the C language, 
string handling routines that assume the presence of 
the NULL terminator provide a ripe environment for 
memory overflow attacks. This library design choice 
intended to simplify programming (i.e., you don’t 
have to manage the size of a string yourself) has 
become a security nightmare. The real problem, 
however, is curriculums do not stress that such 
choices are invalid fault-tolerant assumptions.  

Though security conferences, publications, and 
books call for security awareness and bring attention 
to software vulnerabilities, a more compelling issue 
may be programmer laziness. For example, it is not 
safe to assume a NULL terminator in a C program 
will always indicate the end of a string. Instead, 
programmers need to manage and verify string sizes 
for themselves. Furthermore, it is the programmer's 
job to make sure memory [buffer] operations stay 
within their bounds. Table 2 indicates that sources of 
such faults should be covered in introductory and 
follow-on programming courses as well as language-
specific instruction.  

Because data and memory locations are stored on 
the stack, redirecting program control flow can be 
simple once an appropriate weakness is discovered. 
Buffer overflows can be exploited to modify variable 
pointers or function return addresses on the stack.  
Such modifications can alter program behavior and 
application data or may execute viral code.  
Nonetheless, these results are problems that concern 
robustness, not security.  

Traditional testing methods have been overhauled 
to address these software problems. Fault injection 
techniques [3,4,13], for example, have been used for 
quite some time to identify and root out buffer 

vulnerabilities. No matter how novel or 
comprehensive, testing can not guarantee absence of 
data vulnerabilities in a given program. Testing 
methods, especially for robustness, need to be 
introduced in programming and language specific 
courses and thoroughly reviewed in software 
engineering courses (see table 2). 

Another class of vulnerabilities that should be 
covered by programming curriculums involves integer 
manipulation errors and truncation [11]. Code that 
performs numeric computations is naturally 
susceptible to underflow, overflow, signed numeric 
errors, and truncation of data bytes because of smaller 
data type capacities.  These errors occur because 
ranges are not checked on variables or results, integer 
operations are not bounded, and variables are wrongly 
cast from larger types to smaller types. Even whth 
disposable software, software engineering and 
programming languages courses should identify such 
vulnerabilities as robustness issues, while reinforcing 
the connection of these weaknesses with malicious 
exploitation.  

Memory leaks are another source of problems that 
revolve more around survivable code than security.  
Leaks occur when programmers practice poor 
memory management, resulting in the operating 
system being unaware of memory that should be free 
and available. These hidden memory locations can be 
read and exploited by adversaries and exploited to 
reveal program data.  Memory leaks can also occur 
around function calls when parameters are altered by 
use of adversary-controlled formatting strings.  

The risks described in this subsection are not 
security-centric in nature.  They stem from failure to 
validate user input or prevent users from (mistakenly 
or intentionally) providing erroneous input or 
formatting strings to the program.  Table 2 
summarizes our recommendations for courses where 
these concepts should be introduced. 
 
3.3. Risky coding techniques 
 

An important aspect of modern programming 
languages is that they simplify the programmer's job 
by reducing the required knowledge of the underlying 
hardware environment.  Still, powerful language 
features may not be helpful if they cause problems in 
stressful or abnormal environments where malicious 
parties can find vulnerability when certain language 
features are used.   

Bertrand Meyer was one of many to recognize the 
inherent dangers that come with powerful language 
features [14]. He notes that a language design can be 
considered bad when “the programmer is presented 
with a wealth of facilities, and left to figure out when 



to use each, when not, and which to choose when 
more than one appears applicable.” Take for example 
polymorphism and the ability to dynamically bind 
classes at run time. Polymorphism gives the 
dangerous facility for a subclass to change the 
operations or intentions of its superclass.  When 
dynamic binding is allowed, an adversary can take 
advantage of this facility for malicious purposes.   

Aside from the security threat, polymorphism 
critics have pointed to the decrease in reliability and 
fault-tolerance that such features introduce [15].  The 
inherent risk of using dynamic binding is not 
primarily from malicious parties but rather that the 
end-user or run time environment will not properly 
execute the decision of which method to invoke.  This 
reveals a deeper fault tolerant problem—that of 
ensuring dynamic code is locatable and loadable—
way before issues of Byzantine faults come into view. 
While such programming features are powerful, they 
are not conducive to reliable software.  As such, 
curriculums need to promote the use of safer and 
more reliable programming techniques in lieu of 
powerful, but risky, language features like 
polymorphism.  

As another example, consider dynamic memory 
allocation.  It is heretical in computer science to 
regress to using static data structures. However, there 
is a strong case to be made that static allocation of 
program resources ultimately leads to more reliable 
code.  Dynamic allocation is a powerful, but complex 
tool. Incorrect computations by the application 
programmer routinely result in both of the two major 
memory problems: overflows and leaks. 

Dynamic memory allocation can be incompatible 
with both program predictability and is potentially 
non-deterministic—qualities that fault-tolerant 
software should avoid.  Our education process again 
must change to teach not only the functionality of 
languages, but also the inherent reliability risk that 
comes with certain language features.  Table 2 depicts 
our recommendations for which courses should cover 
risky coding techniques along with the specific 
practices that increase robustness, discussed next. 
 
3.4. Techniques for robustness 
 

Robust programming methods demand that 
programmers expect and code for the unexpected. We 
mention several methods here for completeness and 
affirm that these practices need to be established in 
computer programming courses of all levels, 
introductory programming to high level software 
engineering, so that reliable coding becomes the 
foundational premise on which other, security-related, 
techniques can be built.   

Type systems have been debated over the years in 
terms of whether they increase or decrease 
programmer productivity, code reliability, and reduce 
software faults.  Type systems of programming 
languages can be characterized as strong or weak 
while type checking occurs statically or dynamically 
[16]. Strong typing dictates that that all types for 
variables and data structures must be defined at 
compile time.  We agree with such findings in [17] 
that using strong typing leads to more reliable code 
and an overall reduction in defect-induced software 
faults.  In the case of RoboX, which was implemented 
on two different platforms and coded by different yet 
equally skilled teams, a sixteen-fold increase in 
quality was noted and attributed to the memory safety 
property of strongly-typed languages [16].  

Another simple technique to increase robustness 
involves avoidance of variable length fields. Any data 
field whose length is determined dynamically reduces 
the verifiability and safety of a program. At a high 
level, teaching environments should encourage future 
programmers to verify as much of a program’s data 
structure as possible before execution.  

A third technique for robust programming reduces 
environmental assumptions: always filter input. Input 
validation to ensure that only legal values are 
permitted should be discussed in programming 
curriculum alongside the functional aspects of how to 
get data into a program. This includes basic, good 
practices such as checking integer ranges in code and 
using safe operations on untrusted data.  Size 
validation of input data must guarantee that it does not 
exceed the size of its storage buffer—a basic quality 
coding practice that can reduce run time faults.  As a 
side effect, security threats are also reduced. 

No discussion of robustness and security would be 
complete without addressing testing. Extensive and 
systematic testing must be common practice for 
programmers and no longer relegated in academic 
curriculum to specialized courses.  Source code 
auditing and reviews need to be integrated as part of 
traditional language courses to establish that rigor is 
no longer an option for non-disposable software 
systems. Static and dynamic analysis techniques and 
the proper development of testing suites must also 
take forefront in the way academic institutions present 
programming to future programmers. Tools for 
checking code correctness need to be introduced at 
the same time that compiler features are taught. 

By the intermediate programming level, most 
programming students have been introduced to 
graceful degradation techniques. The notion is that 
when unexpected program termination is unavoidable, 
programmers reduce the impact to the system and to 
the end user.  



In addition to these, there are a multitude of other 
practical techniques that fall under the category of 
good and safe programming rules. With the increase 
of processor capability, CPU cycles do not limit 
quality, reliability, and safety-specific efforts. Among 
suggestions provided by Plakosh in [11], it is a good 
idea to use unsigned types for variables which should 
never have negative values.  Programmers should 
consider that letting a user control input format is 
usually a bad idea.  String constants tend to be better 
for both formatting and output.  

Plakosh also points out that numerous ANSI C 
standard library functions are susceptible to buffer 
overflow attacks. The use of these may endanger 
programs needlessly to faulty logic and runtime errors 
from unexpected input.  A better alternative may be to 
use string functions where maximum number of bytes 
can be specified in the operation.  C++ string 
functions and other “safe” string libraries also exist. 
In many cases, using a language that performs 
runtime boundary checking is a way to mitigate poor 
programming skills—but the better solution is to 
change the way we educate.  

To conclude this train of thought, much of what is 
touted currently as “secure” coding techniques are 
really nothing more than programming principles that 
support robust and reliable software.  Our educational 
paradigms must shift to introduce these concepts at 
the same time that functional aspects of programming 
languages are taught.   

When rigor is demanded in software development, 
programmers must be familiar with standard coding 
practices that support safe, reliable, and efficient 
software. The burden rests on the educational 
establishment to instill this notion early, consistently, 
and continuously in its academic programs.  Once this 
foundation is present, coding for security specific 
threats is not only possible, but can be taught from a 
distinctly different pedagogic framework. 

 
4. Coding for security 

 
Some programs may not rely on protection because 

either there is low risk of malicious or mischievous 
behavior or there is less sensitivity to environmental 
influences. The extensive, and still expanding, 
business reliance on the Internet is a major driving 
force in security-aware practices.  

It is easy to understand why it has taken so long for 
security issues to become incorporated into software 
practice, let alone education. Programming-in security 
is not cheap. First and foremost, for software to be 
secure, programmers must apply their maximum level 
of rigor to ensure that their software is essentially 
flawless. Any routine programming error injects 

vulnerability into the system5. The cost of the 
additional rigor necessary to reduce errors coupled 
with the increasing pressure to be the first to the 
market often leaves security as a second class 
citizen…and a lot of money has been made based on 
this business model. The sins of the past are now 
catching up with us, the innocent observers. 

The Internet itself was not designed with security 
in mind; rather the early (and lingering) focus was on 
connecting computers in a heterogeneous 
environment. Security was left to the application or to 
the next generation (e.g. IP v6) and was not a primary 
concern because business application was not driving 
the development. Security was simply an 
afterthought. 

In terms of educational paradigms, these issues 
must be addressed and incorporated into the computer 
science learning process—where future analysts and 
programmers are birthed. A sense of both high quality 
and secure coding practice must be affirmed in 
programming curriculums, from beginning to end, if 
the tide is going to be turned. Table 2 summarizes our 
recommendations for incorporating security-related 
skills and practice for software development6 and we 
discuss next the needed shift in educational 
philosophy by highlighting security-specific coding 
techniques. 
 
4.1. Caveat emptor 
 

While we have emphasized the importance of rigor 
in modern applications programming, we also point 
out that effective software security demands skeptical 
programmers. In modern applications, a wide variety 
of forces determine what is normal and abnormal. 
Educational processes need to foster a healthy but 
realistic view of program security. Programming 
students must be taught to think like security 
specialists: be skeptical, question the simplest of 
assumptions, resist depending on uncontrolled factors, 
and verify, verify, verify.  

We propose that introducing security-related 
programming practice across a wide spectrum of 
courses will reinforce the idea that programmers are 
the front-line of defense against software exploitation. 
Future programmers and analysts must be keenly 
aware of the forces that cause security and robustness 
to be overlooked, while becoming practitioners of 
security-relevant coding.  
                                                 
5 Here is a clear illustration of the relationship of proper 
programming practices to security. Sloppy or less rigorously 
written programs are rarely secure. 
6 Here, we take a caveat emptor approach and suggest actions that 
programmers can take in addition to (possibly overlapping) 
operating system protection. 



Table 2 lists several “good” professional practices 
that have security related impact: reducing memory-
related vulnerabilities, secure data initialization, 
operating system and process security, template and 
pattern programming, and tamperproofing.  Next, we 
discuss each of these concepts to expose their 
educational relevance; table 2 correlates appropriate 
courses where these practices are best integrated. 
 
4.2. Garbage collecting 

 
One of the easiest places to implement controlled 

skepticism is through aggressive garbage collection. 
Items left over from program execution can offer 
sophisticated intruder information free of charge and 
with little effort, depending only upon the operating 
system procedures for terminating programs and the 
ingenuity of the adversary.  

One of the easiest items for a programmer to clean 
is memory. When a memory location is no longer 
needed by a program, it should be cleaned 
(overwritten) and released. When a program 
completes its task normally, it should clean and 
release remaining memory resources. This may mean 
executing a loop that overwrites a character at a time, 
or utilizing a programming language construct that 
accomplishes the same function, as long as the action 
is overt (not assumed by some unproven feature). 

Sophisticated adversaries may circumvent this 
process by causing a program's abnormal termination 
before cleansing occurs. We posit that such abnormal 
termination is only possible through programming 
errors and again emphasize techniques for graceful 
degradation prevented in the previous section. 

Memory is not the only resource where sensitive 
residuals may reside. Communication connections are 
vulnerable to data interception, message injection, and 
session hijacking. Thus, connections that pass 
sensitive data must be carefully protected, using direct 
security techniques of strong authentication and 
encryption. These techniques are recognized as being 
employed in classical security systems. 

Multi-process or multi-threaded systems are 
notorious for loosing track of or leaving subordinate 
processes unguarded when the main program 
terminates. If left unguarded, these processes may be 
hijacked by sophisticated intruders in much the same 
way as connections. Such "ghost" processes may be 
used by intruders to reveal residual data or other 
malicious intent. 
 
4.3. Starting with a clean slate 

 
One of the first things that entry-level 

programmers are taught is how to initialize data 

structures. They are aided in this elementary task by 
language and architectural approaches to data 
initialization. However, the need to initialize data 
structures by clearing out all residual data is often not 
recognized by programmers eager to exercise their 
new-found skills to produce highly functional 
programs. For security sensitive programs, proper 
initialization is essential; else data may be injected 
into a process from an unrelated process that 
previously utilized the memory location. 

Again applying the caveat emptor principle, one 
approach to addressing memory related vulnerability 
is for the application programmer to manage their 
own memory, where possible. This entails a 
programmer establishing a memory management 
process that requests memory in bulk, then manages 
the allocation during execution. 

Under this paradigm, the entire memory allocation 
can be cleared when it is acquired and increments can 
be cleared when they are returned internally for 
redistribution. The internal memory manager can also 
clear the entire allocation before releasing it to the 
operating system just prior to program termination. 
 
4.4. Cleaning temporary storage areas 

 
We briefly digress to address an issue that is not 

under the control of the application programmer, but 
that reflects a similar security principle, that of 
clearing temporary storage areas. Operating systems 
and input-output systems frequently utilize temporary 
storage locations such as caches, swap spaces, and 
print spools for synchronization, performance, or 
efficiency optimization. Not only are the operations 
themselves outside the control of the programmer, the 
storage areas themselves are not directly or legally 
accessible to the programmer.  

While caching may be out of their control, 
application programmers may be able to reduce 
vulnerability injected by temporary storage 
operations. Compartmentalizing operations so that 
data is used immediately after it is required and the 
data structures are destructed promptly can minimize 
data exposure to swap spaces. Encrypting data before 
it is sent to storage can reduce (or eliminate) exposure 
of data to caches. In some environments these 
operations are redundant because exposure in 
temporary storage areas is prevented by the operating 
system, but skeptical programmers need not rely on 
that. 
 
4.5. Preventing hidden features 

 
We now make a decided shift to address an issue 

has been at the forefront of many programming 



discussions: preventing programmers from 
incorporating unwanted, possibly malicious, features 
into programs that they are assigned to write. Thus, 
we are talking about programming techniques to 
protect clients from programmers. 

Two examples of malicious software features are 
trap doors and penny shaving. Trap doors are 
mechanisms that allow the programmer system access 
outside the normal authorization mechanisms. Trap 
door access is intended to be undetectable and to 
provide high priority and broad access levels. 

Penny shaving involves applications that manage 
some valued resource. Programmers may enter code 
that allows them to divert a very small [micro] portion 
of the resource from each transaction for their 
personal use or redemption. Of course, this code is 
intended to be unidentifiable and to operate covertly. 

Coding techniques cannot prevent excess features 
such as trap doors and penny shaving, per se. 
Rigorous use of well-designed templates can improve 
chances of detecting malicious "features", but the best 
chance for this is presently entwined in rigorous 
development processes that couple a structured 
review process and incorporate verification tools with 
software coding.  

Coding practice can contribute to protecting 
against malicious features by making functionality 
more evident from the program's static representation. 
Standardization based upon templates and patterns 
can help make deviations stand out during the review 
process, allowing detection and removal of malicious 
(or other non-specified) functionality. 
 
4.6. Tamper-proof software 

 
Protecting programs from illegitimate use is a 

classic problem in computer science [18,19,20, 
21,22,23], both as a matter of program security and of 
digital rights management. Tamper-proof techniques 
may be used to protect software that executes on 
remote hosts. It turns out to be a very difficult 
problem to protect program execution, manipulation, 
and copying in an environment that is controlled by a 
sophisticated adversary.  

Program obfuscation is one approach to tamper-
proofing, though a general program obfuscation 
approach remains elusive [24, 25]. Still, approaches 
based on complex program control flow [21] and 
others on homomorphic encryption [22] reflect 
progress in this area. 
 
4.7. Security systems 

 
We intentionally left this class of techniques until 

last. Information security is a discipline in itself 

dealing with the study of mechanisms for meeting 
security requirements of all shapes and sizes. 
Cryptographic systems and approaches to provide 
privacy, integrity, authentication, non-repudiation and 
combinations therein are interesting and applicable to 
this discussion, but are omitted here for lack of space. 

The basics of information security are essential for 
any comprehensive computing science curriculum. 
These basics include the fundamentals of 
cryptography, cryptographic protocols, encryption 
systems, information assurance, principles of privacy, 
legal and ethical issues, and physical security. 
 
5. Conclusion 
 

In this paper we present an approach for analyzing, 
measuring, and teaching programming rigor that 
result in robust and secure systems. Our approach is 
based on hierarchical partitioning of software rigor 
categories for robustness and security. These 
categories form the basis of a new approach to 
teaching security-aware programming or coding 
techniques.   

We give an approach for teaching appropriate 
security-aware concepts in a software curriculum and 
map the skills and concepts to specific courses. 
Software vulnerability is second only to identity theft 
as the main security problem of the modern Internet. 
We propose an approach to reversing the trend that is 
inexpensive and consistent with existing and known 
successful programming practice. 
 
6. References 

 
[1] Howard, M. and LeBlanc, D., Writing Secure Code, 

Microsoft Press, Seattle, WA, 2002. 
[2] Viega, J. and McGraw, G., Building Secure Software: 

How to Avoid Security Problems the Right Way, 
Addison-Wesley, Boston, MA, 2002. 

[3] Ghosh, A. and O’Connor, T., “Analyzing Programs 
for Vulnerability to Buffer Overrun Attacks”, Proc. of 
the 21st NIST-NCSC National Information Systems 
Security Conference, 1998. 

[4] Haugh, E. and Bishop, M., “Testing C Programs for 
Buffer Overflow Vulnerabilities”, Proc. of the 2003 
Symposium on Networked and Distributed System 
Security (SNDSS 2003), Feb. 2003. 

[5] Hoglund, G. and McGraw, G., Exploiting Software: 
How to Break Code, Addison-Wesley, Boston, MA, 
2004. 

[6] Cheetham, C. and Ferraiolo, K., “The Systems 
Security Engineering Capability Maturity Model”, 
21st National Information Systems Security 
Conference, October 5-8, 1998, Arlington, Virginia, 
USA. 

 



 
[7] McGraw, G., “Software Security”, IEEE Security and 

Privacy, vol. 2, no. 2, March/April 2004, 80-83 
[8] Ghosh, A, Howell, C., and Whittaker, J., "Building 

Software Securely from the Ground Up," IEEE 
Software, vol. 19, no. 1, January/February 2002, 14-
16. 

[9] Lee, Y., Lee, J., and Lee, Z., “Integrating Software 
Lifecycle Process Standards with Security 
Engineering”, Computers and Security, vol. 21, no. 4, 
2002, 345-355. 

[10] IEEE Std 610.12-1990, IEEE Standard Glossary of 
Software Engineering Terminology. 

[11] Plakosh, D., “Coding Flaws That Lead to Security 
Failures”, 2nd Annual Hampton University 
Information Assurance Symposium. April 2005. 

[12]  Peteanu, R., “Best Practices for Secure Develop-
ment”, citeseer.ist.psu.edu/peteanu01best.html, June 
2005. 

[13]  Ghosh, A. and Voas, J., “Inoculating software for 
survivability”, Communications of the ACM, vol. 42, 
no. 7, 1999, 38-44. 

[14] Meyer, B., “Principles of language design and 
evolution”, Proc. of the 1999 Oxford-Microsoft 
Symposium in Honour of Sir Tony Hoar, Millenial 
Perspectives in Computer Science, 2002, 229-246. 

[15] Schwartz, J., “Object Oriented Extensions to Ada: A 
Dissenting Opinion”, Proc. of the Conference on TRI-
ADA '90, Baltimore, Maryland, December 03-06, 
1990, 92-94. 

[16] Lehrmann-Madsen, O., Magnusson, B., and Möller-
Pedersen, B.,“Strong Typing of Object-Oriented 
Languages Revisited”, Proc. OOPSLA and ECOOP, 
ACM Press, New York, NY, October 1990,  140–150. 

[17] Tomatisa, N., Brega, R., Rivera, G., and Siegwart, R., 
“May You Have a Strong (-Typed) Foundation: Why 
Strong-Typed Programming Languages Do Matter”, 
Proc. of the International Conference on Robotics and 
Automation, New Orleans, April 2004 

[18] David Aucsmith, "Tamper Resistant Software: An 
Implementation", Proceedings of the First 
International Workshop on Information Hiding, 
Pages: 317-33, 1996, LNCS 1174 

[19] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. 
Boneh, J. Mitchell, and M. Horowitz. Architectural 
Support for Copy and Tamper Resistant Software. In 
Proceedings of the 9 Int'l Conference on Architectural 
Support for Programming Languages and Operating 
Systems (ASPLOSIX) , pages 169--177, November 
2000. 

[20] David Lie, John Mitchell, Chandramohan A. 
Thekkath, Mark Horowitz", Specifying and Verifying 
Hardware for Tamper-Resistant Software", 2003 
IEEE Symposium on Security and Privacy May 11 - 
14, 2003 Berkeley, CA. p. 166  

[21] Toshio Ogiso ,Yusuke Sakabe,Masakazu Soshi,and 
Atsuko Miyaji, "Software Tamper Resistance Based 
on the Difficulty of Interprocedural Analysis", WISA 
2002, Cheju Island, Korea, August 28-30, 2002  

 

 
[22] Sander, T., and Tschudin, C.F., "Protecting mobile 

agents against malicious hosts", 'Mobile Agents and 
Security', Lecture Notes in Computer Science, Vol. 
1419, SpringerVerlag, 1997, pp. 44-61. 

[23] T. Sander, and C. Tschudin, "Towards mobile 
cryptography." Proceedings of the 1998 IEEE 
Symposium on Security and Privacy, Los Alamitos, 
CA, USA: IEEE Comput. Soc, 1998. p.215-24. 

[24]  [NAL] L. D'Anna, B. Matt, A. Reisse, T. van Vleck, 
S. Schwab, P. LeBlanc. "Self-Protecting Mobile 
Agents Obfuscation Report". Network Associates 
Laboratories, Technical Report 03-015 (final), June 
30, 2003. 

[25] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. 
Sahai, S. Vadhan, K. Yang. "On the (Im)possibility of 
Obfuscating Programs". In Proceedings of the 21st 
Annual International Cryptology Conference on 
Advances in Cryptology. LNCS, v. 2139, pp. 1-18. 
2001. 


