
Foundations for Security Aware Software Development Education1

Alec Yasinsac1, J. Todd McDonald2
Florida State University, Tallahassee, FL, USA

yasinsac/mcdonald@cs.fsu.edu

Abstract

Most instances of software exploitation are really
software failure. Even though we cannot eliminate
vulnerability from modern information systems, we
can reduce exploitable code long term with sound,
robust development practices. We argue that the
current hot topic of so-called "secure coding"
represents commonly taught coding techniques that
ensure robustness, rather than ensuring any
commonly understood concept of security. Weaving
the practice of rigorous coding techniques into
curriculum is essential—coding for security is useless
apart from fault-tolerant foundations. However,
security-specific coding techniques need to be
integrated pedagogically alongside robustness so that
students can differentiate the two. We propose in this
paper a shift in instructional methods based on this
distinction to help future programmers, developers,
and software engineers produce “security-aware”
software.1 2

.
1. Introduction

As the saying goes, the best defense is a good
offense. Defensive coding practices, which are
termed by many as “secure coding” [1,2], are
intended to counter the growing threat of software
vulnerability exploitation. Buffer overflows [3,4]
have been a hot topic of secure coding because they
remain commonplace in diverse attack schemes where
malicious code is injected and then executed on a
victim system. As Hogland and McGraw state, buffer
overflows are the “whipping boy of software security”
because of all the hype and fear they generate [5].
Fixes to buffer overflow problems emerge in system
after system, usually after the fact and usually

1 This material is based upon work supported in part by the U.S.
Army Research Laboratory and the U.S. Army Research Office
under grant number DAAD19-02-1-0235
2 The views expressed in this article are those of the author and do
not reflect the official policy or position of the United States Air
Force, Department of Defense, or the U.S. Government

addressing only symptoms of a greater problem in
code design and implementation.

While these fixes are labeled "security patches",
they are actually less related to security than they are
to poor programming practice. Many programming
errors can result in security vulnerability. Buffer
overflows occur because programmers do not follow
well-known programming practices, resulting in
software delivered with unresolved faults. Buffer
overflow repair has little to do with security of the
application being repaired. Most buffer overflow
exploits use program flaws to gain access privileges
they would otherwise not have, though the resulting
mischief or malice are rarely directed at the
vulnerable application itself.

So, what is termed software exploitation currently
is merely a veiled manifestation of software failure.
We can view security under the larger umbrella of
software assurance—which covers failure from both
malicious and non-malicious interactions. Whether
failure comes from execution of unintentionally
buggy programs or the malicious exploitation of a
weakness inherent in code—software faults cause loss
of productivity and, subsequently, loss of revenue.

A primary goal of software assurance is to
engineer robustness from the ground up. From the
robustness perspective, problems identified as
security flaws can be seen more as problems
stemming from poor programming practice than from
a security threat. Without laying a proper foundation
in good fault tolerant coding practices, integrating
security goals into software has little value.

We propose a needed paradigm shift in educational
environments that delineates and reinforces principles
of robust and secure coding. Though distinct
pedagogic concepts, security builds squarely upon
robustness and both should be strategically
incorporated into computer science curriculums.
Strengthening the foundation of what and how we
teach future programmers about robust practices will
provide a necessary foundation to incorporate security
specific goals.

In section 2, we build our argument by considering
necessary curriculum changes that highlight security-
aware programming in both professional practice and
educational patterns. In section 3 we address concepts
that will build foundational support for robust coding.
Section 4 details knowledge areas that are needed for
security-specific requirements themselves. Section 5
gives our conclusions and summary of contribution.

2. Teaching security-aware programming

Hogland and McGraw [5] assert that “bad”
software is the root of the security problem—and
others agree security problems can only be fixed by
building robust and survivable software. In order to
influence the next generation of programmers toward
security awareness, we believe that educational
programs must teach the proper relationship and
distinction between robust and secure coding
practices. In professional practice, work to integrate
security into software systems is well underway. We
use process level maturity as a means to introduce our
suggested patterns for education.

2.1. Classifying robustness

The systems security engineering capability
maturity model (SSE-CMM)3 was launched in the late
1990’s to address the need for holistic integration of
security in the software development lifecycle [6].
The SSE-CMM provides a framework to reason about
security needs, guidance, vulnerabilities, assessments,
and effectiveness of security mechanisms themselves.

McGraw states that to practice good software
security you must leverage good software engineering
practices and start early in the development life cycle
[7]. Higher level managers such as chief information
officers, administrators, and infrastructure planners
have begun to see the value of integrating security
into the entire lifecycle development process instead
of dealing with it as an afterthought [8, 9]. In terms
of education, specific techniques for coding need to
be presented and taught in the light of CMM-related
lifecycle concepts and security-related processes—
early and as often as possible.

The amount of rigor a professional development
organization puts into its software process is tied to
the nature of the computer programs they develop.
We consider three notional levels of rigor that are
logically tied to a likely organizational level of
capability and process level maturity (CMM level).

3 See http://www.sse-cmm.org

2.1.1. Disposable software. At the lowest level of
required rigor, disposable software is “here today and
gone tomorrow”. Such programs gain less benefit
from maintenance or lifecycle cost assessment. They
are written to get a specific job done in a short amount
of time—with no view for long term use. Robust
coding practices can still be of benefit at this level
(especially when short-term usage assumptions are
wrong), but the primary focus of the system is on-
time delivery or features—not necessarily quality.

2.1.2. Non-disposable software. While disposable
software can be produced by any CMM-level 1
organization, most software systems are developed
with expected longer term use. Rigor should be
applied based on the budget, customer base, projected
lifetime, and complexity of the system to be
developed. Typical software development
organizations strive for some level of process maturity
to sustain non-disposable software development—
striving for CMM-level 2 or 3 maturity to achieve
minimum success.

2.1.3. Moon-shot software. The highest level of rigor
we term the “moon-shot” system. This is software
that is not only long term and requires organization al
established discipline for success, but has stringent
requirements based on safety (human life is at stake),
monetary value (multiple billions might be at risk),
large user base, or high maintenance cost factors (a
satellite sent into space). A fundamental property of
moon-shot systems is that it is costly or impossible to
test these systems to the level demanded by the
application's criticality.

CMM dictates that organizations with development
capabilities lower than CMM-level 3 not develop
moon-shot systems. In fact, moon-shot systems
represent our desire to use the very best software
development processes in every lifecycle area.
Disposable software may not require robust coding
principles or integration of security requirements—
though using such techniques provide inherent
benefit. Moon-shot software, by nature, demands the
highest level of development quality controls.

Non-disposable is the category where most
software efforts fall. It is essential that present and
future programmers understand their role in
developing non-disposable software that is not only
functionally correct and efficient, but that is robust
and designed to prevent faults. Our educational
environments, the specific quality techniques that are
taught, and the concepts of development and security
rigor all help reinforce a security-aware view of
programming.

2.2. Teaching robustness

Entry level programmers and computer science
students should be taught the difference between
disposable software (robustness level 1) and "moon
shot" (robustness level 3) systems. They should be
taught mechanisms for development expediency, so
that prototype and proof of concept implementations
can be quickly and efficiently built (robustness level
1). They should also understand the rigor necessary to
develop critical applications such as embedded
software in life support, surgical, or weapons systems
(robustness level 3).

Presently, instructional emphasis is on robustness
level 2 systems (all systems that are not level 1 or
level 3) that classically categorize the majority of all
information systems. That balance is changing. The
impact of buffer overflow problems has begun to
convince developers that systems once considered
level 2 are actually level 3 simply because errors in
them can impact other (possibly level 3) applications,
multiplied by the scale of the Internet.

There is a natural correlation between the rigor
partitions in the previous section and standard
professional programming curriculums. It turns out
that the lower rigor levels are the most applicable (and
understandable) to junior, entry level students and
programmers. Conversely, the higher levels are more
naturally incorporated into more advanced, theoretic
programming and security courses. Table 1 depicts
these robustness levels in terms of appropriate courses
where these concepts need to be introduced and
taught. We consider now the other aspect of security-
aware programming which table 1 depicts: techniques
that specifically enforce security.

2.3. Classifying software security

Just as categorizing systems allows us to select
appropriate levels of rigor and robustness, we
recognized that we may similarly categorize security
conscious systems, coincidentally, in three levels.
These levels are hierarchical and cumulative in the
sense that systems that demand higher level security
automatically need the lower level techniques. We
term these techniques as rigorously robust software
protection, threat protection required, and critical
systems protection.

2.3.1. General software protection. The first
security level includes systems that demand rigorous
robustness guarantees. These are systems that do not
require any classical security techniques, but where
malfunction would be catastrophic. A, somewhat
contrived example of such a system may be software
the guides delicate instruments used in major organ

surgery. While this software may execute in a closed
environment, essentially with no security threat,
software flaws are a matter of life and death. This
example is contrived in the sense that it is likely that
some level of security will be included in such a
system. The essence of our argument is that software
that is not "critically" robust, i.e. sufficiently robust
for even the most high risk system, is not sufficiently
robust for any security purpose.

2.3.2. Software-specific protection. The second
security level is for systems with software-specific
security requirements, such as systems that require
protection for the data or code for privacy, integrity or
availability. These systems range from low risk access
control systems (such as for home network access) to
medium risk systems where compromise could cause
significant financial or business impact.

2.3.3. Critical systems protection. Systems that
contain sensitive information whose compromise may
result in high impact consequences, such as loss of
life or significant resources, require level 3 security
rigor. These systems demand cryptographically strong
techniques for authentication and access control and
other strong security practices.

2.4. Teaching security

The software community is gradually
acknowledging the need to incorporate security often
and early into the development process—but now the
educational community must begin to introduce
robust and secure coding techniques often and early in
the learning process. In spite of attention given to
secure coding recently, programming curriculums still
need to adapt principles of professional software
practice into class-related objectives and goals.

 Course Type

Hierarchical
Rigor

En
try

-le
ve

l
Pr

og
ra

m
m

in
g

Fo
llo

w
-o

n
Pr

og
ra

m
m

in
g

D
at

a
St

ru
ct

ur
es

So
ftw

ar
e

En
gi

ne
er

in
g

Pr
og

ra
m

m
in

g
La

ng
ua

ge
s

Se
cu

rit
y

1: Disposable SW x x x
2: Non-disposable SW x x x x x x

R
ob

us
tn

es
s

3: Moon Shot SW x x x x x
1: General protection x x x x
2: Software-specific x x x x x

Se
cu

rit
y

3: Critical systems x x
Table 1. Integrating Robustness and Security Rigor

into Software Development Curriculum

Table 1 summarizes our pedagogy based on
hierarchical rigor. Several categories of standard
computer science courses are listed across the top
rows: entry-level and follow-on programming, data
structures, software engineering, programming
languages, and security. For each type of course we
specify the level of both fault-tolerance and security
rigor that should be covered in that course.

For entry-level courses, we recommend giving a
general and high-level overview of fault-tolerant
software development concepts across the spectrum
of quality. In depth study of level two and three
robustness rigors are addressed in follow-on
programming courses, data structures, and software
engineering. Security related courses address higher
levels of robustness rigor in the context of other
software security-related concerns. Programming
language courses should give thorough examples of
robustness techniques that support both efficient
development for disposable software and longer-term
code maintenance for non-disposable software.

In terms of instruction on different levels of
security rigor, follow-on programming courses should
expose students to the notion of general and -specific
software security techniques. Software engineering
should incorporate such foundations in context to the
overall software lifecycle development plan. Upper
level programming and security courses should be
used to cover requirements and techniques for level
three critical systems rigor and to lay practical
foundations for using cryptographically strong
protection mechanisms.

The next question to deal with is which robustness
and security techniques to teach in these courses. We
address this issue in section 3 by detailing sources of
fault-tolerant vulnerabilities and avoidance techniques
while we detail in section 4 instructional patterns for
security-specific coding. Table 2 summarizes our
recommendations for course integration of specific
areas of professional practice discussed in sections 3
and 4. Instruction on these topics should follow other
pedagogical lines concerning how to effectively teach
programming and computer science related material.4

3. Coding for robustness

The cause of many common security faults can be
traced to lack of software risk avoidance. Robustness,
defined in [10], is the “degree to which a software
component functions correctly in the presence of
exceptional inputs or stressful environmental
conditions”. Exceptional program execution cases that

4 See http://www.pedagogicalpatterns.org/ where example patterns
of computer science instruction are given

malicious parties may exceed any notion of what has
traditionally been considered. Intentionally
malformed or irrationally long, short, or empty inputs,
altered program control flow, dynamically linked or
patched code segments, and memory corruption errors
are faults that programmers must consider in modern
applications.

Educational environments must foster the notion
that secure programs are first and foremost reliable
and safe programs. By safe we mean that programs
clean up after themselves, police their own code and
data space, and do not assume anything from outside
their environment without verifying first. It is truly
the ounce of prevention that far outweighs the “tons”
of cure later down the road. The programmer's mantra
that the operating system (or other environmental
mechanism) clears memory (before or after
execution), provides containment, protects input
streams, etc. must be changed.

The foundations, however, begin with how coding
is presented above the basic functional and semantic
levels. We consider several areas of fault-tolerant
coding practice and the need for their integration into
software development education.

 Course Type

Programming
Practice &
Skill

En
try

-le
ve

l
Pr

og
ra

m
m

in
g

Fo
llo

w
-o

n
Pr

og
ra

m
m

in
g

D
at

a
St

ru
ct

ur
es

So
ftw

ar
e

En
gi

ne
er

in
g

Pr
og

ra
m

m
in

g
La

ng
ua

ge
s

Se
cu

rit
y

Defect Patterns x x x
Sources of Faults x x x x
Testing Methods x x x
Risky Coding x x
Robust Coding
Techniques x x x x x
Secure Coding
Techniques x x x x x
Memory-Related
Vulnerability x x x
Secure Data
Initialization x x x
Operating System &
Process Security x x x
Template and Pattern
Programming x x
Tamperproofing x x

Table 2. Integrating Robust and Secure Coding
Practice into Software Development Curriculum

3.1. Risky defects

Research continues to identify coding weaknesses
and vulnerabilities that are security related, so-called
[1,2,5,8,11,12]. By definition, software vulnerability

is a defect in either design or implementation of
code—and 90% of vulnerabilities derive from
exploiting known defect patterns in coding [11]. As
table 2 depicts, practical defect avoidance by
identifying failure causes such as defect
patterns/sources of faults, and teaching appropriate
remedies, including robust coding techniques, should
be introduced early in programming coursework.

3.2. Sources of faults

Buffer overflows have been called the “nuclear
bomb of all software vulnerabilities” [5]. They result
from programming errors that allow memory to be
corrupted. When data structures are not properly
protected, data is written outside of memory
boundaries. Once corruption occurs, a wide variety of
attacks are possible including overwriting critical
program information, changing global state, removing
security restrictions, or disabling program controls.

In programming languages such as the C language,
string handling routines that assume the presence of
the NULL terminator provide a ripe environment for
memory overflow attacks. This library design choice
intended to simplify programming (i.e., you don’t
have to manage the size of a string yourself) has
become a security nightmare. The real problem,
however, is curriculums do not stress that such
choices are invalid fault-tolerant assumptions.

Though security conferences, publications, and
books call for security awareness and bring attention
to software vulnerabilities, a more compelling issue
may be programmer laziness. For example, it is not
safe to assume a NULL terminator in a C program
will always indicate the end of a string. Instead,
programmers need to manage and verify string sizes
for themselves. Furthermore, it is the programmer's
job to make sure memory [buffer] operations stay
within their bounds. Table 2 indicates that sources of
such faults should be covered in introductory and
follow-on programming courses as well as language-
specific instruction.

Because data and memory locations are stored on
the stack, redirecting program control flow can be
simple once an appropriate weakness is discovered.
Buffer overflows can be exploited to modify variable
pointers or function return addresses on the stack.
Such modifications can alter program behavior and
application data or may execute viral code.
Nonetheless, these results are problems that concern
robustness, not security.

Traditional testing methods have been overhauled
to address these software problems. Fault injection
techniques [3,4,13], for example, have been used for
quite some time to identify and root out buffer

vulnerabilities. No matter how novel or
comprehensive, testing can not guarantee absence of
data vulnerabilities in a given program. Testing
methods, especially for robustness, need to be
introduced in programming and language specific
courses and thoroughly reviewed in software
engineering courses (see table 2).

Another class of vulnerabilities that should be
covered by programming curriculums involves integer
manipulation errors and truncation [11]. Code that
performs numeric computations is naturally
susceptible to underflow, overflow, signed numeric
errors, and truncation of data bytes because of smaller
data type capacities. These errors occur because
ranges are not checked on variables or results, integer
operations are not bounded, and variables are wrongly
cast from larger types to smaller types. Even whth
disposable software, software engineering and
programming languages courses should identify such
vulnerabilities as robustness issues, while reinforcing
the connection of these weaknesses with malicious
exploitation.

Memory leaks are another source of problems that
revolve more around survivable code than security.
Leaks occur when programmers practice poor
memory management, resulting in the operating
system being unaware of memory that should be free
and available. These hidden memory locations can be
read and exploited by adversaries and exploited to
reveal program data. Memory leaks can also occur
around function calls when parameters are altered by
use of adversary-controlled formatting strings.

The risks described in this subsection are not
security-centric in nature. They stem from failure to
validate user input or prevent users from (mistakenly
or intentionally) providing erroneous input or
formatting strings to the program. Table 2
summarizes our recommendations for courses where
these concepts should be introduced.

3.3. Risky coding techniques

An important aspect of modern programming
languages is that they simplify the programmer's job
by reducing the required knowledge of the underlying
hardware environment. Still, powerful language
features may not be helpful if they cause problems in
stressful or abnormal environments where malicious
parties can find vulnerability when certain language
features are used.

Bertrand Meyer was one of many to recognize the
inherent dangers that come with powerful language
features [14]. He notes that a language design can be
considered bad when “the programmer is presented
with a wealth of facilities, and left to figure out when

to use each, when not, and which to choose when
more than one appears applicable.” Take for example
polymorphism and the ability to dynamically bind
classes at run time. Polymorphism gives the
dangerous facility for a subclass to change the
operations or intentions of its superclass. When
dynamic binding is allowed, an adversary can take
advantage of this facility for malicious purposes.

Aside from the security threat, polymorphism
critics have pointed to the decrease in reliability and
fault-tolerance that such features introduce [15]. The
inherent risk of using dynamic binding is not
primarily from malicious parties but rather that the
end-user or run time environment will not properly
execute the decision of which method to invoke. This
reveals a deeper fault tolerant problem—that of
ensuring dynamic code is locatable and loadable—
way before issues of Byzantine faults come into view.
While such programming features are powerful, they
are not conducive to reliable software. As such,
curriculums need to promote the use of safer and
more reliable programming techniques in lieu of
powerful, but risky, language features like
polymorphism.

As another example, consider dynamic memory
allocation. It is heretical in computer science to
regress to using static data structures. However, there
is a strong case to be made that static allocation of
program resources ultimately leads to more reliable
code. Dynamic allocation is a powerful, but complex
tool. Incorrect computations by the application
programmer routinely result in both of the two major
memory problems: overflows and leaks.

Dynamic memory allocation can be incompatible
with both program predictability and is potentially
non-deterministic—qualities that fault-tolerant
software should avoid. Our education process again
must change to teach not only the functionality of
languages, but also the inherent reliability risk that
comes with certain language features. Table 2 depicts
our recommendations for which courses should cover
risky coding techniques along with the specific
practices that increase robustness, discussed next.

3.4. Techniques for robustness

Robust programming methods demand that
programmers expect and code for the unexpected. We
mention several methods here for completeness and
affirm that these practices need to be established in
computer programming courses of all levels,
introductory programming to high level software
engineering, so that reliable coding becomes the
foundational premise on which other, security-related,
techniques can be built.

Type systems have been debated over the years in
terms of whether they increase or decrease
programmer productivity, code reliability, and reduce
software faults. Type systems of programming
languages can be characterized as strong or weak
while type checking occurs statically or dynamically
[16]. Strong typing dictates that that all types for
variables and data structures must be defined at
compile time. We agree with such findings in [17]
that using strong typing leads to more reliable code
and an overall reduction in defect-induced software
faults. In the case of RoboX, which was implemented
on two different platforms and coded by different yet
equally skilled teams, a sixteen-fold increase in
quality was noted and attributed to the memory safety
property of strongly-typed languages [16].

Another simple technique to increase robustness
involves avoidance of variable length fields. Any data
field whose length is determined dynamically reduces
the verifiability and safety of a program. At a high
level, teaching environments should encourage future
programmers to verify as much of a program’s data
structure as possible before execution.

A third technique for robust programming reduces
environmental assumptions: always filter input. Input
validation to ensure that only legal values are
permitted should be discussed in programming
curriculum alongside the functional aspects of how to
get data into a program. This includes basic, good
practices such as checking integer ranges in code and
using safe operations on untrusted data. Size
validation of input data must guarantee that it does not
exceed the size of its storage buffer—a basic quality
coding practice that can reduce run time faults. As a
side effect, security threats are also reduced.

No discussion of robustness and security would be
complete without addressing testing. Extensive and
systematic testing must be common practice for
programmers and no longer relegated in academic
curriculum to specialized courses. Source code
auditing and reviews need to be integrated as part of
traditional language courses to establish that rigor is
no longer an option for non-disposable software
systems. Static and dynamic analysis techniques and
the proper development of testing suites must also
take forefront in the way academic institutions present
programming to future programmers. Tools for
checking code correctness need to be introduced at
the same time that compiler features are taught.

By the intermediate programming level, most
programming students have been introduced to
graceful degradation techniques. The notion is that
when unexpected program termination is unavoidable,
programmers reduce the impact to the system and to
the end user.

In addition to these, there are a multitude of other
practical techniques that fall under the category of
good and safe programming rules. With the increase
of processor capability, CPU cycles do not limit
quality, reliability, and safety-specific efforts. Among
suggestions provided by Plakosh in [11], it is a good
idea to use unsigned types for variables which should
never have negative values. Programmers should
consider that letting a user control input format is
usually a bad idea. String constants tend to be better
for both formatting and output.

Plakosh also points out that numerous ANSI C
standard library functions are susceptible to buffer
overflow attacks. The use of these may endanger
programs needlessly to faulty logic and runtime errors
from unexpected input. A better alternative may be to
use string functions where maximum number of bytes
can be specified in the operation. C++ string
functions and other “safe” string libraries also exist.
In many cases, using a language that performs
runtime boundary checking is a way to mitigate poor
programming skills—but the better solution is to
change the way we educate.

To conclude this train of thought, much of what is
touted currently as “secure” coding techniques are
really nothing more than programming principles that
support robust and reliable software. Our educational
paradigms must shift to introduce these concepts at
the same time that functional aspects of programming
languages are taught.

When rigor is demanded in software development,
programmers must be familiar with standard coding
practices that support safe, reliable, and efficient
software. The burden rests on the educational
establishment to instill this notion early, consistently,
and continuously in its academic programs. Once this
foundation is present, coding for security specific
threats is not only possible, but can be taught from a
distinctly different pedagogic framework.

4. Coding for security

Some programs may not rely on protection because

either there is low risk of malicious or mischievous
behavior or there is less sensitivity to environmental
influences. The extensive, and still expanding,
business reliance on the Internet is a major driving
force in security-aware practices.

It is easy to understand why it has taken so long for
security issues to become incorporated into software
practice, let alone education. Programming-in security
is not cheap. First and foremost, for software to be
secure, programmers must apply their maximum level
of rigor to ensure that their software is essentially
flawless. Any routine programming error injects

vulnerability into the system5. The cost of the
additional rigor necessary to reduce errors coupled
with the increasing pressure to be the first to the
market often leaves security as a second class
citizen…and a lot of money has been made based on
this business model. The sins of the past are now
catching up with us, the innocent observers.

The Internet itself was not designed with security
in mind; rather the early (and lingering) focus was on
connecting computers in a heterogeneous
environment. Security was left to the application or to
the next generation (e.g. IP v6) and was not a primary
concern because business application was not driving
the development. Security was simply an
afterthought.

In terms of educational paradigms, these issues
must be addressed and incorporated into the computer
science learning process—where future analysts and
programmers are birthed. A sense of both high quality
and secure coding practice must be affirmed in
programming curriculums, from beginning to end, if
the tide is going to be turned. Table 2 summarizes our
recommendations for incorporating security-related
skills and practice for software development6 and we
discuss next the needed shift in educational
philosophy by highlighting security-specific coding
techniques.

4.1. Caveat emptor

While we have emphasized the importance of rigor
in modern applications programming, we also point
out that effective software security demands skeptical
programmers. In modern applications, a wide variety
of forces determine what is normal and abnormal.
Educational processes need to foster a healthy but
realistic view of program security. Programming
students must be taught to think like security
specialists: be skeptical, question the simplest of
assumptions, resist depending on uncontrolled factors,
and verify, verify, verify.

We propose that introducing security-related
programming practice across a wide spectrum of
courses will reinforce the idea that programmers are
the front-line of defense against software exploitation.
Future programmers and analysts must be keenly
aware of the forces that cause security and robustness
to be overlooked, while becoming practitioners of
security-relevant coding.

5 Here is a clear illustration of the relationship of proper
programming practices to security. Sloppy or less rigorously
written programs are rarely secure.
6 Here, we take a caveat emptor approach and suggest actions that
programmers can take in addition to (possibly overlapping)
operating system protection.

Table 2 lists several “good” professional practices
that have security related impact: reducing memory-
related vulnerabilities, secure data initialization,
operating system and process security, template and
pattern programming, and tamperproofing. Next, we
discuss each of these concepts to expose their
educational relevance; table 2 correlates appropriate
courses where these practices are best integrated.

4.2. Garbage collecting

One of the easiest places to implement controlled

skepticism is through aggressive garbage collection.
Items left over from program execution can offer
sophisticated intruder information free of charge and
with little effort, depending only upon the operating
system procedures for terminating programs and the
ingenuity of the adversary.

One of the easiest items for a programmer to clean
is memory. When a memory location is no longer
needed by a program, it should be cleaned
(overwritten) and released. When a program
completes its task normally, it should clean and
release remaining memory resources. This may mean
executing a loop that overwrites a character at a time,
or utilizing a programming language construct that
accomplishes the same function, as long as the action
is overt (not assumed by some unproven feature).

Sophisticated adversaries may circumvent this
process by causing a program's abnormal termination
before cleansing occurs. We posit that such abnormal
termination is only possible through programming
errors and again emphasize techniques for graceful
degradation prevented in the previous section.

Memory is not the only resource where sensitive
residuals may reside. Communication connections are
vulnerable to data interception, message injection, and
session hijacking. Thus, connections that pass
sensitive data must be carefully protected, using direct
security techniques of strong authentication and
encryption. These techniques are recognized as being
employed in classical security systems.

Multi-process or multi-threaded systems are
notorious for loosing track of or leaving subordinate
processes unguarded when the main program
terminates. If left unguarded, these processes may be
hijacked by sophisticated intruders in much the same
way as connections. Such "ghost" processes may be
used by intruders to reveal residual data or other
malicious intent.

4.3. Starting with a clean slate

One of the first things that entry-level

programmers are taught is how to initialize data

structures. They are aided in this elementary task by
language and architectural approaches to data
initialization. However, the need to initialize data
structures by clearing out all residual data is often not
recognized by programmers eager to exercise their
new-found skills to produce highly functional
programs. For security sensitive programs, proper
initialization is essential; else data may be injected
into a process from an unrelated process that
previously utilized the memory location.

Again applying the caveat emptor principle, one
approach to addressing memory related vulnerability
is for the application programmer to manage their
own memory, where possible. This entails a
programmer establishing a memory management
process that requests memory in bulk, then manages
the allocation during execution.

Under this paradigm, the entire memory allocation
can be cleared when it is acquired and increments can
be cleared when they are returned internally for
redistribution. The internal memory manager can also
clear the entire allocation before releasing it to the
operating system just prior to program termination.

4.4. Cleaning temporary storage areas

We briefly digress to address an issue that is not

under the control of the application programmer, but
that reflects a similar security principle, that of
clearing temporary storage areas. Operating systems
and input-output systems frequently utilize temporary
storage locations such as caches, swap spaces, and
print spools for synchronization, performance, or
efficiency optimization. Not only are the operations
themselves outside the control of the programmer, the
storage areas themselves are not directly or legally
accessible to the programmer.

While caching may be out of their control,
application programmers may be able to reduce
vulnerability injected by temporary storage
operations. Compartmentalizing operations so that
data is used immediately after it is required and the
data structures are destructed promptly can minimize
data exposure to swap spaces. Encrypting data before
it is sent to storage can reduce (or eliminate) exposure
of data to caches. In some environments these
operations are redundant because exposure in
temporary storage areas is prevented by the operating
system, but skeptical programmers need not rely on
that.

4.5. Preventing hidden features

We now make a decided shift to address an issue

has been at the forefront of many programming

discussions: preventing programmers from
incorporating unwanted, possibly malicious, features
into programs that they are assigned to write. Thus,
we are talking about programming techniques to
protect clients from programmers.

Two examples of malicious software features are
trap doors and penny shaving. Trap doors are
mechanisms that allow the programmer system access
outside the normal authorization mechanisms. Trap
door access is intended to be undetectable and to
provide high priority and broad access levels.

Penny shaving involves applications that manage
some valued resource. Programmers may enter code
that allows them to divert a very small [micro] portion
of the resource from each transaction for their
personal use or redemption. Of course, this code is
intended to be unidentifiable and to operate covertly.

Coding techniques cannot prevent excess features
such as trap doors and penny shaving, per se.
Rigorous use of well-designed templates can improve
chances of detecting malicious "features", but the best
chance for this is presently entwined in rigorous
development processes that couple a structured
review process and incorporate verification tools with
software coding.

Coding practice can contribute to protecting
against malicious features by making functionality
more evident from the program's static representation.
Standardization based upon templates and patterns
can help make deviations stand out during the review
process, allowing detection and removal of malicious
(or other non-specified) functionality.

4.6. Tamper-proof software

Protecting programs from illegitimate use is a

classic problem in computer science [18,19,20,
21,22,23], both as a matter of program security and of
digital rights management. Tamper-proof techniques
may be used to protect software that executes on
remote hosts. It turns out to be a very difficult
problem to protect program execution, manipulation,
and copying in an environment that is controlled by a
sophisticated adversary.

Program obfuscation is one approach to tamper-
proofing, though a general program obfuscation
approach remains elusive [24, 25]. Still, approaches
based on complex program control flow [21] and
others on homomorphic encryption [22] reflect
progress in this area.

4.7. Security systems

We intentionally left this class of techniques until

last. Information security is a discipline in itself

dealing with the study of mechanisms for meeting
security requirements of all shapes and sizes.
Cryptographic systems and approaches to provide
privacy, integrity, authentication, non-repudiation and
combinations therein are interesting and applicable to
this discussion, but are omitted here for lack of space.

The basics of information security are essential for
any comprehensive computing science curriculum.
These basics include the fundamentals of
cryptography, cryptographic protocols, encryption
systems, information assurance, principles of privacy,
legal and ethical issues, and physical security.

5. Conclusion

In this paper we present an approach for analyzing,
measuring, and teaching programming rigor that
result in robust and secure systems. Our approach is
based on hierarchical partitioning of software rigor
categories for robustness and security. These
categories form the basis of a new approach to
teaching security-aware programming or coding
techniques.

We give an approach for teaching appropriate
security-aware concepts in a software curriculum and
map the skills and concepts to specific courses.
Software vulnerability is second only to identity theft
as the main security problem of the modern Internet.
We propose an approach to reversing the trend that is
inexpensive and consistent with existing and known
successful programming practice.

6. References

[1] Howard, M. and LeBlanc, D., Writing Secure Code,

Microsoft Press, Seattle, WA, 2002.
[2] Viega, J. and McGraw, G., Building Secure Software:

How to Avoid Security Problems the Right Way,
Addison-Wesley, Boston, MA, 2002.

[3] Ghosh, A. and O’Connor, T., “Analyzing Programs
for Vulnerability to Buffer Overrun Attacks”, Proc. of
the 21st NIST-NCSC National Information Systems
Security Conference, 1998.

[4] Haugh, E. and Bishop, M., “Testing C Programs for
Buffer Overflow Vulnerabilities”, Proc. of the 2003
Symposium on Networked and Distributed System
Security (SNDSS 2003), Feb. 2003.

[5] Hoglund, G. and McGraw, G., Exploiting Software:
How to Break Code, Addison-Wesley, Boston, MA,
2004.

[6] Cheetham, C. and Ferraiolo, K., “The Systems
Security Engineering Capability Maturity Model”,
21st National Information Systems Security
Conference, October 5-8, 1998, Arlington, Virginia,
USA.

[7] McGraw, G., “Software Security”, IEEE Security and

Privacy, vol. 2, no. 2, March/April 2004, 80-83
[8] Ghosh, A, Howell, C., and Whittaker, J., "Building

Software Securely from the Ground Up," IEEE
Software, vol. 19, no. 1, January/February 2002, 14-
16.

[9] Lee, Y., Lee, J., and Lee, Z., “Integrating Software
Lifecycle Process Standards with Security
Engineering”, Computers and Security, vol. 21, no. 4,
2002, 345-355.

[10] IEEE Std 610.12-1990, IEEE Standard Glossary of
Software Engineering Terminology.

[11] Plakosh, D., “Coding Flaws That Lead to Security
Failures”, 2nd Annual Hampton University
Information Assurance Symposium. April 2005.

[12] Peteanu, R., “Best Practices for Secure Develop-
ment”, citeseer.ist.psu.edu/peteanu01best.html, June
2005.

[13] Ghosh, A. and Voas, J., “Inoculating software for
survivability”, Communications of the ACM, vol. 42,
no. 7, 1999, 38-44.

[14] Meyer, B., “Principles of language design and
evolution”, Proc. of the 1999 Oxford-Microsoft
Symposium in Honour of Sir Tony Hoar, Millenial
Perspectives in Computer Science, 2002, 229-246.

[15] Schwartz, J., “Object Oriented Extensions to Ada: A
Dissenting Opinion”, Proc. of the Conference on TRI-
ADA '90, Baltimore, Maryland, December 03-06,
1990, 92-94.

[16] Lehrmann-Madsen, O., Magnusson, B., and Möller-
Pedersen, B.,“Strong Typing of Object-Oriented
Languages Revisited”, Proc. OOPSLA and ECOOP,
ACM Press, New York, NY, October 1990, 140–150.

[17] Tomatisa, N., Brega, R., Rivera, G., and Siegwart, R.,
“May You Have a Strong (-Typed) Foundation: Why
Strong-Typed Programming Languages Do Matter”,
Proc. of the International Conference on Robotics and
Automation, New Orleans, April 2004

[18] David Aucsmith, "Tamper Resistant Software: An
Implementation", Proceedings of the First
International Workshop on Information Hiding,
Pages: 317-33, 1996, LNCS 1174

[19] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D.
Boneh, J. Mitchell, and M. Horowitz. Architectural
Support for Copy and Tamper Resistant Software. In
Proceedings of the 9 Int'l Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOSIX) , pages 169--177, November
2000.

[20] David Lie, John Mitchell, Chandramohan A.
Thekkath, Mark Horowitz", Specifying and Verifying
Hardware for Tamper-Resistant Software", 2003
IEEE Symposium on Security and Privacy May 11 -
14, 2003 Berkeley, CA. p. 166

[21] Toshio Ogiso ,Yusuke Sakabe,Masakazu Soshi,and
Atsuko Miyaji, "Software Tamper Resistance Based
on the Difficulty of Interprocedural Analysis", WISA
2002, Cheju Island, Korea, August 28-30, 2002

[22] Sander, T., and Tschudin, C.F., "Protecting mobile

agents against malicious hosts", 'Mobile Agents and
Security', Lecture Notes in Computer Science, Vol.
1419, SpringerVerlag, 1997, pp. 44-61.

[23] T. Sander, and C. Tschudin, "Towards mobile
cryptography." Proceedings of the 1998 IEEE
Symposium on Security and Privacy, Los Alamitos,
CA, USA: IEEE Comput. Soc, 1998. p.215-24.

[24] [NAL] L. D'Anna, B. Matt, A. Reisse, T. van Vleck,
S. Schwab, P. LeBlanc. "Self-Protecting Mobile
Agents Obfuscation Report". Network Associates
Laboratories, Technical Report 03-015 (final), June
30, 2003.

[25] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A.
Sahai, S. Vadhan, K. Yang. "On the (Im)possibility of
Obfuscating Programs". In Proceedings of the 21st
Annual International Cryptology Conference on
Advances in Cryptology. LNCS, v. 2139, pp. 1-18.
2001.

