
 1

Hybrid Approach for Secure Mobile Agent Computations

J. Todd McDonald
Florida State University

Department of Computer Science
Tallahassee, FL 32306-4530

mcdonald@cs.fsu.edu

Abstract: Mobile agent applications are particularly vulnerable to malicious
parties and thus require more stringent security measures—benefiting greatly
from schemes where cryptographic protocols are utilized. We review and
analyze methods proposed for securing agent operations in the face of passive
and active adversaries by means of secure multi-party computations. We
examine the strengths and weaknesses of such techniques and pose hybrid
schemes which reduce communication overhead and maintain flexibility in the
application of particular protocols.

1 Introduction
Mobile agents offer a unique method for
implementing distributed applications. Itinerant
agents have the ability to migrate among a
preplanned or ad-hoc set of hosts where host inputs
are gathered and agent code is executed. The agent
carries both its static code and a dynamic data state
which embodies all previous results of execution.
Security concerns still occupy a large portion of the
research effort associated with such mobile
programs—both with protecting agents from
malicious hosts and protecting hosts from malicious
agents.
 A multitude of schemes have been developed for
mobile agent security and reviews of various
mechanisms can be found in [MYT05, BC02, and
JK00]. Much work has been done over the last few
years to apply the field of theoretical cryptography to
the mobile agent security problem [ST98, CC+00,
NH+00, AC+01, YS02, TX03a, EM03, ZY03, TX04,
and EW04]. By integrating cryptographic protocols
based on secure multi-party computations (SMC),
software-only protection mechanism can be designed
to guarantee the execution integrity and data
confidentiality of an agent while it is executed at a
remote host.
 The use of secure computation involves a trade-
off between security, trust, and overhead. SMC
protocols can have varying security attributes—
whether at the information theoretic or computational
level—and varying levels of communicational and
computational overhead—normally considered
unreasonable for practical applications. In this paper,
we review specifically the use of these approaches
for mobile agent security and pose hybrid approaches
that offer greater efficiency and more flexibility in
integrating SMC protocols.

 We organize the paper as follows. Section 2
reviews literature related to secure computations
while section 3 analyzes various efforts to integrate
SMC as an agent protection mechanism. Section 4
poses several hybrid mobile agent approaches that
minimize communication overhead and add more
flexibility in the application of SMC protocols to
security. Section 5 summarizes our contributions.

2 Secure Computations
Cryptographers have for some time sought how to
perform a group function when there are a number of
mutually or partially distrusting participants to the
operation. Yao’s blind millionaire problem [Yao86]
is often cited as an early formulation for the two-
party case where a function z = f(x,y) is computed
between Alice and Bob—without leaking any
information about Alice’s input x or Bob’s input y
other than what can be deduced from z itself.
Goldreich and his colleagues in [GMW87] extend
secure computation to n parties—defined in the
general case as a publicly available function f that
takes n private inputs and returns n private outputs:
f(x1, x2, x3, …. , xn) = (y1, y2, …, yn). In some
instances, all parties learn the same function output
such that y1=y2=…=yn, making the output publicly
known.
 Secure computation is referred to synonymously
as secure multi-party computation (SMC), secure
function evaluation (SFE) or secure circuit
evaluation. Various contributions from active
research in the field can be found in [BGW88,
CCD88, Kil88, AFK89, AF90, BMR90, Bea91,
MR92, CF+96, CD+99, NPS99, CC+00, Gol00,
HM01, NN01, CL+02, DN03, FG+04]. In terms of
practical use, [DA01] summarize privacy-preserving,
real-world applications that can be represented as an
SMC problem such as database query, scientific

 2

computations, intrusion detection, statistical analysis,
geometric computations, and data mining. Malkhi et
al. have developed a full programmatic
implementation of a two-party secure function
evaluator called Fairplay [MN+04] that uses
oblivious transfer [Kil88, AFK89, AF90, BM90] and
one-pass Boolean circuits [Yao86, GMW87, NPS99,
and BMR90].
 SMC protocols typically involve several rounds of
interaction between parties and assume different
types of communication channels including, for
example, private channels between every two parties
[BGW88, CCD88, RB90], a broadcast channel
[RB89, BMR90], and broadcast subsets among
player triples [FG+04]. In terms of security, the
correctness and privacy of any protocol can be
reduced to the evaluation of a secure function
protocol [BMR90]. In the ideal setting, all parties to
an SMC can send their inputs via a secure private
channel to a trusted third party that computes the
group function and return results fairly.
 A primary security result concludes that any
function computable with polynomial resources
(communication and computation) can be
transformed and computed in a secure manner using
polynomial resources [NN01]. Corruption in multi-
party computations deal either with an honest-but-
curious (semi-honest) adversary that passively reads
information from corrupted parties or an active
(malicious) adversary that exerts full control over
parties. Privacy of inputs is at issue in passive
attacks while correctness of the outputs is more in
view in active attacks. Goldreich concluded in
[Gol00] that two parties acting maliciously can be
forced to behave in a semi-honest manner or else be
caught violating the security of the computation.
 For any arbitrary function in the presence of an
active adversary, the computation can still be
securely accomplished as long as less than 1/2 of the
players have not been corrupted [GMW87]. The
unconditional security results found by [BGW88,
CCD88] state that computations can occur as long as
less than 1/3 of the players have been corrupted and
secure channels exist in both directions between any
two players. When broadcast channels are
introduced, unconditional security is possible for the
computation as long as less than 1/2 of the players
are corrupt. Cachin and colleagues [CC+00] reiterate
that computation between two unbounded parties
with “full information” is not securely possible for
arbitrary functions and only limited to trivial
functions g where g(x,y) reveals y. These results are
significant when the multi-party computations are
applied in the realm of mobile agents.

2.1 Evaluation Techniques and Primitives
Yao first posed the idea that a function f can be
modeled and securely executed as a Boolean circuit
[Yao82, Yao86] in a protocol known as secure circuit
evaluation. The circuit can be “scrambled” in a way
to secure host inputs and compute the group output.
Abadi and Feigenbaum posed a two-player scheme in
[AF90] where one player runs a secret program for
another player who has a secret input. Other
techniques for circuit construction including multi-
party cases have been posed in [GMW87, CCD88,
BGW88, CDG88, NPS99, and BMR90]. Once the
function f is represented as a circuit, parties must run
a protocol to evaluate every gate in the circuit.
 Secure primitives in the circuit evaluation process
include tools such as oblivious transfer (OT) [NP01,
NP00, NP99] and verifiable secret sharing (VSS).
Work by [FG+04] has sought to find minimal
complete primitives to accomplish SMC and
characterize security and efficiency of such tools
beyond the two-party case. To accomplish secure
circuit evaluation, the original wire signals for both
inputs and outputs of the circuit are encrypted
(garbled) and the actual wire signals used by the
parties no longer have their same semantic meaning.
In order to translate inputs and outputs to their true
semantic meaning, data is exchanged between two
parties in an oblivious manner—typically 1-of-2 OT
[BM90].
 While OT deals with privacy in circuit-based
SMC, cheating can be addressed by verifiable secret
sharing which allows a “dealer” to distribute shares
of a piece of data among different parties [Sha79,
ZY03]. Normally, parties in the computation must
commit to their bits (which become garbled for
purposes of evaluation) before they are used.
However, no other party could tell whether the
scrambled bits actually represent the real semantic
meaning of a parties input. By using sharing
techniques, parties give shares of their inputs so that
any attempt to alter a commitment can be detected.
Re-sharing of data to prevent a super adversary with
control over some set of parties from gathering
enough shares to compromise a system is discussed
in [OY91, EM03].
 Not all protocols are as secure as their authors
envision. For example, a vulnerability is described in
[TX03b] in the constant round circuit evaluation of
[BMR90] where private information is leaked when
gates within a circuit share a common input wire.
Efficiency is also a major issue and much work has
been done to improve protocols over time [GRR98,
BF+90, CDN01, HM01, DN03]. Other more efficient
methods than Boolean circuits can be used, for
instance, to represent f such as permutation branching

 3

programs, algebraic circuits, low degree and
randomizing polynomials, and matrices over large
fields [NN01]. Hurt and Meier [HM01] present a
protocol that is secure for computing an n-party
function with m multiplication gates in the presence
of less than 1/3 actively corrupted players with
complexity O(mn2).
 Typically, SMC protocols have been adapted for
synchronous networks and suffer from computational
or communicational complexity too high for use in
the real world. Mobile agents operate in
asynchronous environments and therefore other
factors must be taken into account before SMC
techniques can be applied successfully. Work such
as [BCG93, BKR94] offer frameworks for realistic
network environments and Canetti has characterized
the composable nature of security properties for
different protocols operating across asynchronous
networks in [Can00, Can01]. As [EM03, EW04]
suggest, timeouts have to be integrated with
distributed computations for asynchronous networks
(that model the Internet) and the environment for
mobile agent applications.

2.2 Single Round Computations
Mobile agents exhibit three unique properties that
make using SMC protocols difficult: autonomy,
mobility, and disconnected operations. All of the
protocols mentioned thus far have relied on the
exchange of information between parties in multiple
rounds, including the originator of a function.
Agents require non-interactive protocols because the
originator of a function may be offline during the
actual computation. Autonomy stipulates that the
agent does not return home after the first host and can
visit some set of known or unknown hosts. Mobility
without the help of a trusted third party and minimal
communication among parties is a primary goal of
agent security schemes. As [RAD78, AF90] discuss,
there are two ways to view single round
computations between two parties in contrast to
traditional secure function evaluation: computing
with encrypted data and computing with encrypted
functions.

Computing w/
Encrypted

Data
(CED)

Alice has input x while Bob holds function
f(·). Alice sends an encrypted version of x to
Bob who computes and sends the result back
to Alice in a single round of interaction.
Alice decrypts the result to get f(x) while
Bob does not learn x.

Computing w/
Encrypted
Functions

(CEF)

Alice holds the function f(·) while Bob holds
input y. In one-round, Alice sends to Bob an
encrypted version of f(·) who provides his
input y. Alice receives back and decrypts
Bob’s result to learn f(y) but does not learn y
while Bob does not learn f(·)

Secure
Function

Evaluation
(SFE)

Alice and Bob have private inputs to the
function f(x,y). Alice and Bob jointly
compute the function f(x,y) in one round of
computation. Alice learns only the result (and
nothing more) while Bob learns neither the
result nor Alice’s private input.

CEF represents the mobile agent transaction scheme
best and can be extended easily to a multiple host
approach. Sander and Tschudin posed one of the first
non-interactive CEF approaches for mobile code
execution based on homomorphic encryption in
[ST98]. Their results were extended to include any
function implemented by logarithmic-size circuits in
[SYY99]. Cachin et al. in [CC+00] developed a non-
interactive protocol (which we will refer to as the
CCKM scheme) that could be used to evaluate all
polynomial time functions via the use of a scrambled
circuits and oblivious transfer.
 Several important results were derived from
[CC+00]: 1) for unbounded passive adversary, any
function computable by a polynomial-size circuit can
be computed securely; 2) for a bounded active
adversary, any function computable by a polynomial-
size circuit can be computed securely, given a public-
key framework; and 3) any function computable by a
polynomial-sized circuit has a one-round secure
computation in the model. Non-interactive SMC
approaches and results are summarized by [CC+00]
as follows:

[BGW88] Trivial functions where A and B are unbounded

[ST98] Functions representable as polynomials, B is
bounded

[SYY99] Functions computable by logarithmic-depth
circuits, B is bounded

[CC+00] Functions computable by polynomial-depth
circuits, only A is bounded or both A and B are
bounded

The CCKM methodology is foundational to several
approaches for mobile agent security based on secure
multi-party computation, discussed in the next
section.

3 Integrating SMC with Agents
Mobile agent applications have brought a practical
relevance to development of secure, efficient
cryptographic protocol schemes. The goal of SMC
has been stated as guaranteeing the correctness of a
function and the privacy of results among the parties.
In mobile code systems, similar notions exist:
malicious hosts can spy on the code, state, or results
of mobile agents that they execute. Hosts can gain
unfair advantages by altering the normal sequence of
execution, replaying agent computations using
different inputs, or altering the state information

 4

present in the agent. Software-only approaches to
mobile agent security that are secure, efficient, and
removing need for trusted relationships have been the
holy grail in the research field for quite some time.
 There are two primary approaches to integrating
SMC protocols with mobile agents: use single agents
that implement single-round non-interactive
protocols or use multiple agents that execute multi-
round SMC protocols in coalition schemes. We
discuss approaches and issues with the former next.

3.1 Non-Interactive Approaches
To formulate a single-round secure multi-party
computation, the following formal notation from
[CC+00, AC+01] is used: an agent originator O
embodies a private function to be executed by a set of
hosts H1,…,Hl. Two functions—gj(·) and hj(·)—
describe the computation of an agent in terms of a
state x ∈ X and a host input z ∈ Z. Figure 1
illustrates the interaction of an agent which is
captured by a multi-party computation. The state
update function gj takes a current state (brought by an
agent from the previous host) and the local host input
and produces a next state xj. The host output function
hj takes the current state (brought by the agent from
the previous host) and its own local input to produce
its own local output.

Figure 1: Formalizing the Agent Computation

In the CCKM protocol, once the agent computation is
represented as a Boolean circuit and encrypted,
translation tables are required to map actual signals to
scrambled signals. The circuit encoding is based on
Yao’s two-party SFE protocol in [Yao86]. In order to
know what signals to use for their local input, a host

performs oblivious transfer with the originator to get
a set of scrambled signals, and the originator does not
know which signals are chosen. The following
security properties are thus established: 1) the
originator has privacy of the function; 2) each host
has privacy in respect to their local input. The
CCKM approach allows for autonomy in the agent
path by creating an encrypted circuit that is a cascade
of sub-circuits. Each host in the route of an agent’s
path would receive an encrypted circuit on which
their input is applied. However, the CCKM protocol
did not address the ability for each host to use the
“unencrypted” local output of the agent because it
was still encrypted and could only be evaluated by
the originator.
 Extending the CCKM approach further,
Algesheimer et al. [AC+01] produced a non-
interactive protocol (which we refer to as the ACCK
protocol) similar to the trusted hardware of [LM99]
that would allow for secure decryption of host output
when CEF is used. The ACCK scheme, illustrated in
figure 2, makes use of a trusted generic computation
service which is roughly equivalent to the trust we
place in a public key infrastructure. To decrypt the
output of the agent at the local host, the mappings for
the semantics of the signals are encrypted with the
public key of generic service. Each host
accomplishes oblivious transfer with the generic
service (instead of the originator who may be offline)
to decrypt the signals for the output.

Figure 2: ACCK Protocol w/ Generic

Computation Service [AC+01]

By using a secure middleman, the ACCK protocol
allows inputs, outputs, and computations of all hosts
to be hidden from the originator as well as any other
host visited by the agent. The main assumption is
that this trusted third party (TTP) does not collude
with the originator or with any host, but as proposed
would offer a generically secure service for any
application.
 There have been two extensions proposed to the
ACCK protocol that target replacement of the TTP in

 5

some form. Zhong and Yang in [ZY03] introduce a
cryptographic primitive called verifiable distributed
oblivious-transfer (which we refer to as the VDOT
protocol) and Tate and Xu in [TX03a] introduce a
multi-agent approach utilizing their oblivious
threshold decryption (which we refer to as OTD).
Figure 3 shows a notional arrangement of parties in
the VDOT scheme while figure 4 shows a notional
arrangement of parties in the OTD approach.

Figure 3: VDOT Protocol [ZY03]

In the VDOT protocol, mobile agent computations
are divided into security-sensitive and non-security-
sensitive portions. Code that requires integrity or
confidentiality is transformed into a garbled Boolean
circuit. Instead of interactions with one trusted third
party, which has weaknesses involving the corruption
of a single server to the detriment of the entire
system, several trusted third party servers are used to
replicate the functionality of TTP in the VDOT
approach. VDOT guarantees with high probability
the correctness of receiver’s output, enforcement of
the code and state privacy, protection from coalitions
of malicious hosts and malicious TTPs, and the
verification that servers give correct decryption of
host signals.

Figure 4: OTD Protocol [TX03a]

Distribution of trust among a group of servers
strengthens the original ACCK protocol and forces
the table lookup for circuit signals to be performed by

a group of servers that hold shares of the decryption.
The VDOT protocol is general purpose in the sense
that each host need only provide an interpreter for
garbled circuits. By using distributed oblivious
transfer, trusted third parties act as a proxy for agent
owners and provide translation tables for host inputs
without being able to discover host inputs
themselves. Obvious disadvantages to the approach
are increased communication complexity (which the
authors contend is negligible in practice) and the
complexity of breaking a program into security
sensitive portions represented by a Boolean circuit.
 The OTD protocol of [TX03a] is similar in some
regards to VDOT but actually eliminates the trusted
third-party requirement altogether. As a primary
distinction, their approach relies on multiple agents
that are dispatched to disjoint sets of the possible host
pool. Each of these agents act in a threshold manner
(similar to VDOT) to decrypt the encrypted signals
for a given host input without relying on the TTP.
While the ACCK secure computation service
overcame the interaction requirement of Yao’s
encrypted circuit evaluation—a limiting factor in the
mobile code paradigm—OTD replaces this by means
of cryptographic operations and multiple agents that
cooperate together.
 Multiple agents must agree before decryption of
the host’s input signals can occur and this in turn
prevents cheating by keeping a list of hosts that have
already decrypted a signal. Agents eventually return
back to the originating host where all circuit results
are decrypted and combined to produce a final result.
The security in this method rests on the security of
Yao’s secure circuit evaluation, the security of the 1-
out-of-2 oblivious transfer, and the strength of
threshold cryptography. However, this protocol does
not support free-roaming agents and requires
knowledge of the set of hosts an agent will visit.
 Algesheimer et al. in [AC+01] state the ACCK
protocol does not require foreknowledge of the
agent’s path or the hosts that the agent will visit.
Their approach upholds the disconnected and
autonomous nature of a mobile agent. However, it is
not clear whether the number of host, ℓ, must be
specified or known beforehand. The OTD and
VDOT extensions both assume a known number of
hosts or subsets of hosts in order to design the circuit
representation of the group function—thus limiting a
true free-roaming dynamic itinerary.
 Though single-round non-interactive protocols
reduce the communication overhead for SMC,
message sizes increase proportionally, regardless of
input or output size. Tate and Xu, for example, state
that it roughly takes 9k bytes to encrypt 32 bits of
secret data [TX03a] under this scheme. Zhong and
Yang mitigate overhead by keeping security sensitive

 6

portions separate from normal programmatic
requirements. Using multiple round SMC (reviewed
in section 2) offers another approach to
accomplishing secure transactions with mobile
agents, which we analyze now.

3.2 Multiple Round Approaches
Secure multiparty computations have a tradeoff
between trust and efficiency. Neven et al. [NH+00]
were one of the first to envision the use of agents to
implement SMC and reduce the overhead of the
communication itself. Figure 5 summarizes four
different approaches to integrating agents with hosts
to accomplish SMC. Figure 5-a illustrates the ideal
world where agents carry host inputs to a trusted third
party and a protocol is evaluated without the expense
of network broadcasts or bidirectional secure
channels. In the context of the TTP, all parties can
evaluate the protocol and the TTP is assumed to
behave honestly with respect to host inputs.
 The most secure but least efficient method is seen
if figure 5-b: here hosts simply become the execution
environment and setup a multi-party protocol
evaluation. In this case, both the computational and
communicational complexity inherent in the chosen
protocol must be faced and only high speed links
(represented by the dotted lines) make such protocols
practical. Single-round approaches discussed in the
previous section are seen in figure 5-c where an agent
embodies the circuit to be securely evaluated and
each host provides private input as the agent
migrates. In [NH+00], a hybrid solution was posed
as depicted in figure 5-d where high speed
communication links are present between one or
more hosts. Participants in the n-party protocol send
agents carrying their private inputs to one of these
intermediate TTPs who can then efficiently and
securely evaluate the function according to the rules
of the protocol.

Figure 5: Agent Approaches to SMC

In the realm of mobile agents, as with many real
world applications, it is preferable not to rely on a
trusted third party and just perform an SMC among
the parties of a function. Endsuleit and Mie utilize a

group of multiple agents to support such an approach
in [EM03]. In their model, multiple agents carrying
the same realized circuit are deployed to remote hosts
where rounds of the secure protocols are evaluated
among parties. Figure 6 illustrates that agents are
located on some set of hosts and implement multi-
agent computations based on some underlying SMC
protocol. In [EM03] the authors assume the
extensive use of a broadcast channel and suggest the
protocol of [BGW88] with an implementation of
secret sharing from [Sha97]. In [EW04], follow-on
work suggests the use of more efficient protocols
such as those of [HM01].

Figure 6: Multi-Agent Secure Computation

A nice feature of such multiple agent schemes is that
any SMC protocol can be used as long as it meets the
composable security properties defined by Canetti
[Ca01]. In order to adapt the Canetti model, which
assume stationary parties, “slices” are defined in
[EM03, EW04] as periods where a community of n
agents is executed by a set of n different hosts with
no migrations during that period. Resharing of data
shares via the Ostravsky and Yung method [OY91] is
used to also overcome the adverse affects of
migration where malicious hosts can use acquired
shares over time to compromise security.
 The system supports self-repairing code and
threshold agreement of computations, as long as up to
1/3 of the community (agents or hosts) has not been
compromised. The security results mentioned in
section 2 follow because Canetti establishes proof of
a secure protocol for n parties computing a joint
function in the presence of an active adversary
corrupting up to some k limited servers. By using
such agents to implement a redundantly shared global
state of computation and coordinate activity, a wide
variety of SMC protocols can be implemented.
However, as with any multi-round solution, the
communication complexity is extremely high and the
originator must know a priori which hosts will be part
of the computation.
 In [Dad04], another software-only scheme is
presented that implements multiple agents acting in a
threshold manner similar to [TX03a, EM03, EW04].

(a) (b)

(c) (d)

 7

However, there approach does not suppose the
presence of collusions among hosts or rely
necessarily on multiparty protocols. Their approach,
which is termed Remote Distribution Scheme or
RDS, depends on a set of agents that replicate and
share a transaction set. RDS also assumes a publicly
known algorithm which does not necessarily
correspond to the mobile agent setting where code
privacy is required or CEF is being implemented.

4 Hybrid Approaches
SMC offers many advantages for securely
accomplishing a group transaction. There are several
approaches, some already mentioned, to define how
an agent implements a circuit that is part of a multi-
party computation. The originator can send a single
agent with a cascading circuit whose last migration
signals the last computation of the circuit [CC+00,
AC+01, ZY03]. Alternatively, the originator can
send multiple agents with the same circuit that
executes protocols in stepwise multi-round fashion
[EM03, EW04]. A single or set of trusted execution
sites can also be used to accomplish the SMC
interaction [NH+00]. By combining these techniques
where full protocols, multiple agents, and semi-
trusted hosts are utilized, several advantages can be
gained.
 Malkhi et al. [MN+04] note a recent trend in SMC
research where protocols are focused on specific
application contexts—thereby allowing more
efficient representations for specific tasks. This will
be true in the mobile agent paradigm as well—
whereby mobile agents will be used for specific tasks
like auctions, trading, or secure voting. Fiegenbaum
et al. [FP+04] implement a secure computation
mechanism utilizing SMC for collecting survey
results with sensitive information. Their scheme uses
data-splitting techniques and traditional Boolean
circuit evaluation Yao-style [Yao86]. Notably, it also
uses a secure computation server, which acts in the
role of a trusted entity within the system, and is the
initiator of the 2-party function evaluation. We use
this as an example to point out that in practical
applications where true data privacy or true function
privacy is needed, the presence of a trusted server is
not beyond the realm of possibility. In fact, many
agent applications which will be executed “in-house”
will indeed benefit from the availability of such
trusted entities.
 Implementations of SMC in mobile agent systems
must seek to reduce message size, number of
broadcast or pair-wise channels required, and the size
of the circuit. To accommodate agent goals such as
disconnected operations, the originator typically
remains offline during the protocol evaluation. Agent

autonomy requires the task to be accomplished by an
agent that decides where and when to migrate. The
requirement for full autonomy in the agent path and
itinerary lends itself best to a combination of SMC
that balances trust with efficiency. While there is a
desire to eliminate the need or requirement for any
trusted third party or trusted computation service
(like PKI), some environments for SMC may be
conducive to such assistance.
 Non-interactive approaches are limited to a very
small number of protocols that derive from [ST98] or
[CC+00]. Single-round approaches do not require
trusted third parties but come with large message
sizes and their own set of limitations which include
reliance on a trusted entity similar to a PKI.
Extensions to the non-interactive approach such
[ZY03, TX03a] require foreknowledge of at least the
number of hosts to be visited by the agent or the set
of hosts themselves. As SMC protocols find better
and more efficient means of expression over time
(other than Boolean circuits), agent security
approaches should be adaptable to integrate them as
they improve. However, accomplishing multi-agent
fully interactive protocols comes with stiff
communicational costs.
 We pose several hybrid approaches to SMC
integration with mobile agents that can accommodate
free-roaming itineraries as well as reduce overall
communication cost. These approaches can be used
to take advantage of the security properties of
multiparty protocols while remaining flexible for
integration of other protocols with higher efficiency
in the future.

4.1 Invitation and Response
In our first approach, which we term “Invitation and
Response”, a multi-agent architecture is used with a
form of semi-trusted execution sites. We define the
protocol informally first and define two classes of
agents: the invitation agent and the protocol agent.
The originator, O, begins the task by sending an
invitation agent which has some initial set of hosts to
be visited or at a minimum the first host to be visited.
Invitation agents are free-roaming and can make
changes in their itinerary based on environmental
conditions or information obtained from hosts or
other information services.
 To guard the invitation agent against data integrity
and denial of service attacks, two different schemes
can be used. First, a traditional data encapsulation
technique can be used with the stipulation that the
agent code itself is bound to the dynamic state of
each agent instance. Many data encapsulation
protocols are reviewed in [MYT05, JK00] and figure
7 depicts only one invitation agent being used. A
second approach is to use multiple invitation agents

 8

with overlapping and redundant itineraries that
reduce the possibility of malicious corruption. Each
invitation agent has a uniquely identifiable code/state
(to avoid replay attacks), but the collection of agents
represents only a single uniquely identifiable task
(such as a specific auction). If a host receives an
agent requesting participation in the same unique
event, it ignores subsequent requests much like
network devices that only forward packets once.

Figure 7: Invitation and Response Protocol

Invitation agents carry with them the specifications
for input corresponding to an originator’s task. The
specification represents the normal query for a host
input which is part of a multiparty computation.
Hosts will (or will not) respond to this invitation by
dispatching a response agent. The response agent is
based upon an underlying secure multi-party
computation protocol and can be created in different
ways.
 First, the invitation agent can carry the code for
the response agent which each host will use. The
host will execute the response agent first on its local
input and then send the response agent to a semi-
trusted execution location to actually evaluate the
circuit. The second approach involve the dynamic
generation of the code and circuit by the invitation
agent when a host responds positively. A third
method would involve each host responding to the
invitation by sending its input encrypted to the semi-
trusted execution site. This method resembles the
traditional notion of the ideal SMC environment
where parties send their input to a TTP for execution
of the protocol.
 Regardless of the method chosen, response agents
migrate and move to a set of semi-trusted host
environments in order to evaluate the protocol. The
semi-trusted hosts can be specifically designed to
serve multi-party computations (predefined based on
some underlying protocol) or can simply provide
basic agent execution environments with
communication facilities. The key characteristic of
these hosts are that they are connected by a high
bandwidth network so communication costs are

negligible. This corresponds to the SMC approach
seen in figure 5-d where a tradeoff is made with
overhead by bringing agents closer together through
the availability of a high speed communication link
among the servers. Environments are semi-trusted
because group and threshold operations can be
accomplished to eliminate the full trust in any one
 In terms of security, “invitation and response” has
the following properties. Hosts can only send one
agent to the computation which removes the
possibility the circuit can be evaluated on multiple
host inputs. As long as multiple host submissions
(and therefore cheating) are detectable, the
originator’s privacy is preserved. The local host
input is kept private under two scenarios: 1) when
the execution sites are fully trusted, as depicted in
figure 8, no extra security is required and each
execution site is expected to maintain privacy of host
inputs; 2) when the execution sites are semi-trusted,
as depicted in figure 9, a threshold mechanism can be
used to distribute the trust among the set of hosts for
decryption operations of circuit operations.
 The advantages of this hybrid approach include
the ability to accommodate true free-roaming agent
scenarios and to use any type of secure multi-party
protocol for the evaluation of the secure function.
Protocols which have high communication and low
computational complexity can thus be favored
because agents are sent to a semi-trusted environment
that has an assumed high-speed link among execution
sites. Depending on the trust level of the application
environment, fully trusted hosts may be a possibility
and simpler protocols can be utilized that do not
involve threshold decryption of signals.

Figure 8: Fully Trusted Evaluation

The selection of execution environments becomes
one of the issues with the invitation and response
protocol. The two primary factors are the presence
of a high speed communications link between servers
and a common trust level among all parties of the
protocol with the trusted servers. Migration of agents

Invitation
Agent

Response Agents

 9

also becomes more structured as the only free-
roaming portion of the task is to find interested
parties to the computation itself. Response agents
only make two subsequent migrations: to the trusted
server environment and then back to the originator,
who can decrypt the final agent state and obtain the
result.

Figure 9: Semi-Trusted Evaluation

One of the issues well discussed in [AC+00] with
SMC and agents is how can an individual host get its
local output (function h(x,y) seen in figure 1) as the
mobile agent migrates. In invitation and response,
local host output can be handled in one of two ways.
First, since the host output is not private in terms of
the originator, O can be responsible for providing the
output to each host after the evaluation of the secure
function on the execution environment and after
response agents migrate back to the originator.
Second, the set of TTPs can each send their share of
the output or the single TTP can send the output
corresponding to a host back to it, through message
passing or another class of agent.

4.2 Multi-Agent Trusted Execution
When the itinerary of an agent is known beforehand,
simpler agent architecture can be used to facilitate
trusted execution. Several configurations are possible
for host environment in terms of a secure
computation. First the host can be the computation
environment for a cascaded circuit that requires only
one round of execution. Next, the host can
communicate with a semi-trusted party to evaluate an
encrypted circuit or can communicate with a
threshold of semi-trusted parties that provide signal
decryption services in an oblivious manner. The host
can also be the computation environment for a multi-
round circuit and can be visited by more than one
agent.
 As figure 10 and 11 illustrate, multiple agents can
be used to initiate a multi-party protocol among a
predefined set of hosts. Similar to the multi-agent

approaches of [EM03, EW04], multi-agent trusted
execution would allow agents to migrate to hosts
where input is first gathered. When one trusted
execution environment is fully trusted by all parties,
agents can then migrate there to accomplish a multi-
round protocol, as suggested in [NH+00].

Figure 10: Fully Trusted Middle-man

If a less trusted set of execution environments are in
view, figure 11 represents that trusted parties need to
be linked by a high bandwidth communications
network. In either case, agents are dispatched to
hosts in the manner of a traditional multi-party
function as the first step of the task. Once agents
obtain host input they then migrate to a centralized
trusted execution site where the multi-round protocol
is evaluated. In performing such an operation, the
goal again is to minimized the communication
overhead of the network while maximizing the
benefit of any given SMC protocol that is chosen.

Figure 11: Semi-Trusted Middle-men

5 Conclusions
There is a distinct trade-off when using secure
multiparty computations with mobile agent
applications. The overhead of both computation and
communication are barriers which must be overcome
before protocols can be used in a practical manner.
We have reviewed the state of the art in such
integration approaches and posed variations of hybrid
approaches that utilize fully trusted or semi-trusted
execution environments for secure multi-agent
computations. These schemes offer an alternative to

 10

other architectures posed which combine the best of
non-interactive approaches and multi-round SMC
approaches. Future work will involve the formal
description of such protocols and an analysis of their
overhead when specific SMC protocols are in view.

6 References
[AF90] ABADI, M. and FEIGENBAUM, J. Secure circuit

evaluation: A protocol based on hiding information from an
oracle. Jour. of Cryptology. 2 (1990), 1-12.

[AFK89] ABADI, M., FEIGENBAUM J., and J. KILIAN. On

hiding information from an oracle. Jour. of Computer and
System Sciences. 39 (1989), 21-50.

[AC+01] ALGESHEIMER, J., CACHIN, C., CAMENISCH, J.,

and KARJOTH, G. Cryptographic security for mobile code.
Proc. IEEE Symposium on Security and Privacy (May 2001),
2-11.

[Bea91] BEAVER, D. Foundations of secure interactive

computing. In Proc. of the 11th Annual International
Cryptology Conference on Advances in Cryptology, LNCS
576, pp. 377-391, Springer-Verlag, 1991.

[BC02] BIERMAN, E. and CLOETE, E. Classification of

malicious host threats in mobile agent computing. In Proc. of
the 2002 Annual Research Conf. of the South Africa IoCS and
IToETT, Port Elizabeth, South Africa, 2002, pp. 141 – 148.
ISBN:1-58113-596-3.

[BCG93] BEN-OR, M., CANETTI, R., and GOLDREICH, O.

Asynchronous secure communications. In Proc. of 25th Annual
ACM Symposium on Theory of Computing (STOC), pp. 52-61,
ACM 1993.

[BF+90] BEAVER, D. FEIGENBAUM, J., KILIAN, J., and

ROGAWAY, P. Security with low communication overhead.
In Advances in Cryptology—CRYPTO ’90, LNCS 37, Springer
Verlag, 1990.

[BGW88] BEN-OR, M., GOLDWASSER, S., and WIGDERSON,

A. Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In Proc. of Annual ACM
Symposium on Theory of Computing’88, pp. 1-10, 1988.

[BKR94] BEN-OR, M., KELMER, B., and RABIN, T.

Asynchronous secure computations with optimal resilience. In
13th Annual ACM Symposium on Principles of Distributed
Computing (PODC), pp. 183-192, 1994.

[BM90] BELLARE, M. and MICALI, S. Non-interactive oblivious

transfer and applications. Advances in Cryptology—CRYPTO
'89, pp. 547-559, Springer-Verlag, 1990.

[BMR90] BELLARE, M., MICALI, S., and P. ROGAWAY. The

round complexity of secure protocols. In Proc. of 22nd Annual
ACM Symposium on Theory of Computing (STOC), pp. 503-
513, 1990.

[Can01] CANETTI, R. Universally composable security: a new

paradigm for cryptographic protocols. In Proc. of the 42nd
IEEE Symposium on Foundations of Computer Science, p.136,
October 14-17, 2001.

[Can00] CANETTI, R. Security and composition of multiparty

cryptographic protocols. Jour. of Cryptology, 13:1 (2000),
143-202.

[CC+00] CACHIN, C., CAMENISCH, J., KILIAN, J., and

MÜLLER, J. One-round secure computation and secure
autonomous mobile agents. In MONTANARI, U., ROLIM,
J.P., WELZL, E., editors, Proc. 27th International Colloquium
on Automata Languages and Programming (ICALP), LNCS
1853, pp 512-523, Springer-Verlag, 2000.

[CCD88] CHAUM, D., CRÉPEAU, C., DAMGARD, I. Multiparty

unconditionally secure protocols (extended abstract). In Proc.
of the 20th Annual ACM Symposium on Theory of Computing
(STOC), Chicago, Illinois, pp.11-19, May 2-4, 1988.

[CDG88] CHAUM, D., DAMGARD, I., and VAN DE GRAAF, J.

Multiparty computations ensuring privacy of each party’s
input and correctness of the result. In, POMERANCE, C.,
editor, Proc. CRYPTO ’87, LNCS 293, 1988.

[CDN01] CRAMER, R., DAMGARD, I., NIELSEN, J.B.

Multiparty computation from threshold homomorphic
encryption. In Advances in Cryptology – EUROCRYPT ’01,
LNCS 2045, pp. 280-300, 2001.

[CD+99] CRAMER, R., DAMGARD, I., DZIEMBOWSKI, S.,

HIRT, M., and RABIN, T. Efficient multiparty computations
with dishonest minority. In STERN, J., editor, Proc. of
EUROCRYPT 99, LNCS 1592. IACR, Springer-Verlag, 1999.

[CF+96] CANETTI, R., FEIGE, U., GOLDREICH, O., and

NAOR, M. Adaptively secure multi-party computation. In
Proc. of the 34th Annual ACM Symposium on Theory of
Computing (STOC), pp. 639-648, 1996.

[CL+02] CANETTI, R., LINDELL, Y., OSTROVSKI, R., and

SAHAI, A. Universally composable two-party and multi-party
secure computation. In Proc. of the 34th Annual ACM
Symposium on Theory of Computing (STOC), pp. 494–503,
2002.

[Dad04] DADON-ELICHAI, A. RDS: Remote distributed

scheme for protecting mobile agents. In Proc. of AAMAS’04,
July 19-23, New York, New York. ACM, 2004.

[DA01] DU, W. And ATALLAH, M. Secure multi-party

computation problems and their applications: a review and
open problems. In Proc. of New Security Paradigms
Workshop, Cloudcroft, NM, USA, pp. 11-20, Sept 2001.

[DN03] DAMGARD, I. and NIELSEN, J. Universally

composable efficient multiparty computation from threshold
homomorphic encryption. In Proc. Advances in Cryptology -
Crypto 2003, LNCS 2729, pp. 247-264, 2003.

[EM03] ENDSULEIT, R. and MIE, T. Secure multi-agent

computations. In Proc. of Int. Conf. on Security and
Management, vol. 1, pp. 149-155. CSREA, 2003.

[EW04] ENDSULEIT, R. and WAGNER, A. Possible attacks on

and countermeasures for secure multi-agent computation. In
Proc. of Int. Conf. on Security and Management (SAM), pp.
221-227, 2004.

[FG+04] FITZI, M., GARAY, J., MAURER, U., and

OSTRAVSKY, R. Minimal complete primitives for secure
multi-party computation. Jour. of Cryptography, 18 (2005),
37-61.

[FP+04] FEIGENBAUM, J., PINKAS, B., RYGER, R., and

SAINT JEAN, F. Secure computation of surveys. EU
Workshop on Secure Multiparty Protocols, 2004.

 11

[GMW87] GOLDREICH, O., MICALI, S., and WIGDERSON, A.

How to play any mental game. In Proc. of the 19th Annual
ACM Symposium on Theory of Computing (STOC), pp. 218-
229, 1987.

[Gol00] GOLDREICH, O. Secure multi-party computation.

Working draft, version 1.2, March 2000.

[GRR98] GENNARO, R., RABIN, M.O., RABIN, T. Simplified

VSS and fast-track multiparty computations with applications
to threshold cryptography. In Proc. 17th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 101-111,
1998.

[HM01] HIRT, M. and MAURER, U. Robustness for free in

unconditional multi-party computation. In Proc. of Cypto’01,
LNCS 2139, pp. 101-118, Springer-Verlag, 2001.

[JK00] JANSEN, W. and KARYGIANNIS, T. NIST Special

Publication 800-19 - Mobile Agent Security. National Institute
of Standards and Technology, 2000.

[Kil88] KILIAN, J. Founding cryptography on oblivious transfer.

In Proc. of 20th Annual ACM Symposium on Theory of
Computing (STOC), pp. 20-31, 1988.

[LM99] LOUREIRO, S. and MOLVA, R. Function hiding based

on error correcting codes. In BLUM, M. and LEE, C. H.,
editors, Cryptographic Techniques and E-Commerce, Proc. of
the 1999 Int’l Wrkshp on Cryptographic Techniques and E-
Commerce (CrypTEC '99), City University of Hong Kong
Press, 1999.

[MN+04] MALKHI, D., NISAN, D., PINKAS, B., and SELLA, Y.

Fairplay—A secure two-party computation system. In Proc.
Usenix Security Symposium 2004, pp. 287-302, August 2004.

[MR92] MICALI, S. and ROGAWAY, P. Secure computation. In

Advances in Cryptology—CRYPTO ’91, LNCS 576, pp, 392-
404. Springer-Verlag, 1992.

[MYT05] MCDONALD, J.T., YASINSAC, A., and THOMPSON,

W. A survey on mobile agent security. Technical report, TR-
050329, Dept. of Computer Science, Florida State University.
Available, http://www.cs.fsu.edu/ research/reports/TR-
050329.pdf.

[NN01] NAOR, M. and NISIM, K. Communication complexity

and secure function evaluation. In Electronic Colloquium on
Computational Complextiy (ECCC), 8(62), 2001.

[NP01] NAOR, M. and PINKAS, B. Efficient oblivious transfer

protocols. In Proc. of SODA 2001 (SIAM Symposium on
Discrete Algorithms), Jan. 7-9 2001, Washington DC.

[NP00] NAOR, M. and PINKAS, B. Distributed oblivious transfer.

Proc. Advances in Cryptology -- Asiacrypt '00, LNCS 1976,
Springer-Verlag, pp.200-219, December 2000.

[NP99] NAOR, M. and PINKAS, B. Oblivious transfer and

polynomial evaluation. In Proc. of the 31st Annual ACM
Symposium on Theory of Computer Science (STOC), Atlanta,
GA, pp. 245-254, May 1-4, 1999.

[NPS99] NAOR, M., PINKAS, B., and SUMNER, R. Privacy

preserving auctions and mechanism design. In 1st ACM
Conference on Electronic Commerce, pp. 129-139, 1999.

[NH+00] NEVEN, G., VAN HOEYMISSEN, E., DE DECKER,
B., and PIESSENS, F. Enabling secure distributed
computations: semi-trusted hosts and mobile agents.
Networking and Information Systems Journal, 3:1-18, 2000.

[OY91] OSTRAVSKY, R. and YUNG, M. How to withstand

mobile virus attacks. In Proc. of the 10th Annual ACM
Symposium on Principles of Distributed Computing (PODC),
pp. 51-59, 1991.

[RB89] RABIN, T. and BEN-OR, M. Verifiable secret sharing

and multiparty protocols with honest majority. In Proc. of the
21st Annual ACM Symposium on Theory of Computing,
Seattle, Washington, pp.73-85, May 14-17, 1989.

[RAD78] RIVEST, R.L., ADLEMAN, L, and DERTOUZOS,

M.L. On data banks and privacy homomorphisms. In
DEMILLO, R.A., DOBKIN, D., JONES, A., and LIPTON, R.,
editors, Foundations of Secure Computation, pp. 169-177,
Academic Press, 1978,

[Sha79] SHAMIR, A. How to share a secret. Communications of

the ACM, 22:11 (1979), 612-613.

[ST98] SANDER, T. and TSCHUDIN, C. Protecting mobile

agents against malicious hosts. In VIGNA, G., editor, Mobile
Agents and Security, LNCS 1419, pp. 44-61, Springer-Verlag,
1998.

[SYY99] SANDER, T., YOUNG, A., and YUNG, M. Non-

interactive cryptocomputing for NC1. In Proc. of the 40th IEEE
Symposium on Foundations of Computer Science, pp. 17-19,
1999.

[TX03A] TATE, S.R. and XU, K. Mobile agent security through

multi-agent cryptographic protocols. In Proc. of the 4th
International Conference on Internet Computing (IC 2003),
pp. 462-468, 2003.

[TX03b] TATE, S.R. and XU, K. On garbled circuits and constant

round secure function evaluation. CoPS Lab Technical Report
2003-02. Available http://cops.csci.unt.
edu/publications/2003-02/2003-02.pdf, 2003.

[TX04] TATE, S.R. and XU, K. Universally composable mobile

agent computation. In Proc. of the 7th Information Security
Conference (ISC’04), Sept. 2004.

[Yao82] YAO, A.C. Protocols for secure computation. In Proc. of

the 23rd Annual IEEE Symposium on Foundations of
Computer Science, 1982.

[Yao86] YAO, A.C. How to generate and exchange secrets. In

Proc. of the 27th IEEE Symposium on Foundations of
Computer Science, pp. 162-167, 1986.

[YS02] YOKOO, M. and SUZUKI, K. Secure multi-agent

dynamic programming based on homomorphic encryption and
its application to combinatorial auctions. In Proc. of the 1st
International Joint Conference on Autonomous agents and
Multiagent Systems, ICAA’02, Bologna, Italy, pp. 112 – 119,
2002.

[ZY03] ZHONG, S. and YANG, Y.R. Verifiable distributed

oblivious transfer and mobile agent security. In Proc. of the
2003 Joint Workshop on Foundations of Mobile Computing,
September 2003.

