
HETEROGENOUS DATABASE INTEGRATION USING AGENT-

ORIENTED INFORMATION SYSTEMS ♦♦♦♦

J. Todd McDonald, Michael L. Talbert, and Scott A. DeLoach
Air Force Institute of Technology

Graduate School of Engineering and Management
Department of Electrical and Computer Engineering

Wright-Patterson Air Force Base, OH 45433-7765
jeffrey.mcdonald@afit.af.mil, 937-256-1917 (Presenter)

michael.talbert@afit.af.mil., 937-255-6565 x4280
scott.deloach@afit.af.mil, 937-255-6565 x4284

Keywords: Agents, Military Applications, Modeling and Simulation, Data Integration

Abstract

The Department of Defense has an extensive family of models used to simulate the mission

level interactions of weapon systems. Interoperability and reuse of the underlying data files used to

create simulation scenarios are of particular interest to this community. Figure 1 presents a pictorial

overview of the data integration problem domain itself and how both model to model and input-

source-data to model correlation is required. Approaches to schema and data integration originate

from the traditional field of federated database research, though these solutions tend to be data-

oriented and not application-oriented. The emerging field of agent-oriented information systems

(AOIS) views data as the central focus of an application while providing an overall framework for

deriving system architecture. Combining object-oriented data modeling, a persistent programming

language and an agent-oriented analysis and design methodology, we achieve key goals of simulation

interoperability relevant to this problem domain. A multi-tiered agent framework is developed and its

capabilities to handle reusability and integration of scenarios across simulation models are

demonstrated by prototypical applications. Object-oriented modeling techniques are used to

encapsulate and organize the syntactic information contained in simulation scenario database files

while the semantic information of these objects is examined for data integration purposes. The agent

architecture provides a communication layer to support collaborative development and a distributed

environment for information brokering.

The reutilization problem across simulation models arises when the information contained in

scenario database files needs to be re-used in another scenario of the same model or as entities in a

domain-similar model. To compound this problem, no single input source file may be directly

♦ The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force,

Department of Defense, or the US Government.

responsible for describing a scenario entity, and the scenario entity itself may be distributed over

multiple data blocks in a set of input files. Currently, the process of mapping data input files into a

scenario file (Figure 1) is done with minimal software support, is very tedious, and is done by one

analyst at a time, with no facility for collaborative assistance from other domain specialists.

 Figure 1: Heterogeneous Database Problem Domain

Agent technology itself offers a different paradigm for looking at problems such as

information reuse, data source combination, and intelligent construction of scenarios. Automation and

reduced human effort can be achieved when intelligent user interfaces are combined into the

framework as well. Information agents in our framework are used in terms of simulation model

integration for two key purposes:

� Provide encapsulation, representation, and access to the information of any given set of scenario
database files (from JIMM/SWEG, SUPPRESSOR, EADSIM, etc.)

� Provide encapsulation, representation, and access to the information contained in any given source
input file (EWIR, MSFD, DTED, CONOPS, etc.)

We use an agent-oriented analysis and design methodology (MaSE) to analyze this simulation

specific problem domain and derive a set of agent classes with appropriate conversations to support

goal-directed behavior. In terms of application demonstration, three primary agent types are

implemented and defined further in terms of system capability. These three types form the core of an

“information layer” and include the information requestor, provider, and broker agents. External

MSFD

DTED

EWIR

CONOPS

CIB

DFAD

DOCUMENTS

C
E
R
T
C
O
R
T

SUPPRESSOR

JIMM/SWEG

MOSAIC

EADSIM

CEESIM

RISS

DEES

TDB

SDB

EDB
SUPPRESSOR

TDB

SDB

EDB
SUPPRESSOR F-15/F-16 vs SA-6

Suppressor Scenario

B-52/EA-6B/F-4G
vs SA-12
Suppressor Scenario

Integrate any
Scenario Input

Source File
(provide

tracability)

Into Any
Simulation

Model

Execute this
scenario in

another model
like EADSIM

Automate the
scenario creation

process and
provide expert help

to an analyst

Reuse parts of
this scenario

in another
model like

JIMM

“layers” of agent types that support collaboration and intelligent construction are envisioned.

Traditionally, a semantic or ontological broker is used to provide the “point of reference” to terms and

types of information in an agent brokering system because it makes judgments about information

requests according to a set of predefined ontologies that an information gathering system is based

upon. Our framework envisions scenario reuse and traceability to input data sources by finding

semantic levels of relationships from the object models that encapsulate and represent these data

sources. The “ontology” for scenario reuse is thus based on the definition of and relationships

between various levels of these semantic objects (Figure 2).

We implement an architecture that allows persistent objects to be both created and retrieved

from an ObjectStore object-oriented database management system (OODBMS). Persistence in

regards to this framework is seen as orthogonal to the agent-oriented information system, yet support

is provided by the framework itself for OODBMS access. Figure 2 illustrates the separation of

concerns across these two architectures.

 Figure 2: Orthogonality of OODBMS Architecture and Agent Framework

The OODBMS architecture only deals with persistence-capable objects (scenario component

instances) stored in database files accessible by an OODBMS server. In contrast, the agent framework

is based on the existence of common semantic objects (and their instances), the information content of

which all participating agents agree. Support is explicitly built into provider agent applications to

“provide” information in the context of the agent system, but the underlying source is either 1) the

original textual scenario files; 2) a persistently stored object representation of a scenario or data input

TDB
SDB

IDB
LDB

TDB
SDB

EDB
UAN

Agent
Architecture

SWEG
Scenario
Data Files

SUPPRESSOR
Scenario Data

Files

Persistent
SUPPRESSOR

Persistent
SUPPRESSOR

SWA
MSFD

OODBMS
Architecture

ObjectStore
Server A

ObjectStore
Server B

msfdXX.odb

msfdYY.odb

suppressorSWA97.odb

suppressorSWA05.odb

jimmXXX.odb

“scms” root
PSuppressorSim

instance

“msfd” root
PMSFD instance

MSFD
Data File

Persistent
MSFD

ObjectStore
Inspector

Client
Application

OODBMS
Specific
Query

Application

Persistent
JIMM/SWEG

“scms” root

“jimm” root

Agent
Framework

Specific
Applications

an
Information Agent

“Gateway”
Application

Persistent
MSFD

an ObjectStore
database file

file; or 3) a relational data source. In terms of the agent architecture, the source of the information that

an agent provides is unknown, and for ultimate reuse purposes, inconsequential. Agents can “broker”

information on different levels, and our research uses common object representations such as instances

of specific input source or scenario object models. Figure 3 illustrates the distributed, cross-platform

nature of the framework along with representative applications functioning in different “roles” within

the information layer of the agent architecture.

 Figure 3: Application Demonstration

Agents provide unique benefits to information integration in this context above those provided

by traditional heterogeneous database architectures.

� Semantic models in this domain require post-processing of instance data; this is best supported
in the context of an “active” data source that information agents can provide.

� Federated databases tend to be “data” centric and not “application” centric. Multi-agent
systems provide a life cycle approach that can provide direct traceability of user requirements
into system components and agent classes.

� AOIS technology keeps the “focus” of system development on the data without binding to a
particular data storage mechanism.

� Agents provide the ability to abstract away the underlying data representation of information
sources within information systems.

� Agent based systems can be expanded to provide greater functionality without drastic
architectural changes. Intelligent interfaces and the ability to achieve coordinated plan-based
goals are not possible from a database-centered approach to systems development.

MASC CERTCORT
Broker GUI

Port
3000

Computer A
(UNIX)

Computer B
(NT)

Computer C
(UNIX)

MASC SUPPRESSOR
Data Gateway

Port
4100

Port
4101

MASC SUPPRESSOR
Data Gateway

TDB1
TDB2
TDB3
SDB
UAN

a SUPPRESSOR Scenario
(SWA97)

TDB
SDB
UAN

a SUPPRESSOR Scenario
(SWA2000)

Port
4200

MASC MSFD
Data Gateway

SWA97
MSFD

an MSFD
data source file

Port
4201

A persistently stored MSFD
(SWA2000 MSFD)

Computer D
(NT)

MASC SUPPRESSOR
SimBuilder

Port
5100

Analyst/User

� Scenario model integration and construction has certain information retrieval aspects that are
naturally suited to underlying information agent architecture. AOIS has implementation in
terms of both information-gathering systems and the encapsulation of traditional data sources
normally part of a database management system.

