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Abstract: Defending a legitimate software program from a malicious host is a most challenging task. 
In particular, adversaries may subvert forensics tools, find and exploit known application weaknesses, 
and reverse-engineer code in order to understand and thwart their intended purposes. From a 
developer's perspective, one standard defence is to dramatically increase the computational 
resources an adversary expends on analyzing the client code. We explore in this paper ideas related 
to intent protection, an approach to software security that combines changes in black-box program 
behaviour with white-box structural changes. We present experimental results that show whether 
random input/output patterns may be achievable through systematic code transformations or random 
variation. As a result, we offer observations on the relationship between functional entropy and 
correlation with generalized software intent protection schemes. 
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1. Introduction  
Software protection is of great interest to commercial industry.  Millions of dollars and years of 
research are invested in the development of proprietary algorithms used in software programs.  A 
reverse engineer that successfully reverses another company’s proprietary algorithms can develop a 
competing product to market in less time and with less money.  The threat is even greater in military 
applications where adversarial reversers can use reverse engineering on unprotected military 
software to compromise capabilities on the field or develop their own capabilities with significantly less 
resources.  Thus, it is vital to protect software, especially the software’s sensitive internal algorithms, 
from adversarial analysis.  
 
Software protection through obfuscation is a growing research area, though military commanders 
have applied obfuscation or deception as a battlefield principle for centuries.  In this paper, we 
evaluate solutions to software obfuscation under the intent protection model (Yasinsac and 
McDonald, 2008), a combination of white-box and black-box protection that reflects how reverse 
engineers analyze programs using combined static and dynamic analysis attacks. Specifically, we 
leverage compositional function tables (CFT) and embedded symmetric key cryptography to produce 
functional entropy on a small scale for the protection of deterministic functions. Functional tables 
represent the perfect white-box hiding manifestation because only the input/output pairs are made 
available. Thus, function tables provide black-box information with no correlation to the original 
algorithm (intermediate computations). 
 
As a contribution, we examine the effectiveness of using symmetric key cryptography and CFTs as a 
software-only protection technique. Using the intent protection model, we point out the need to hide 
both the input/output relationships of a program as well as the programmatic logic embodies in 
syntactic structures. We define, analyze, and measure the functional entropy of functional 
compositions with respect to traditional data cipher measures. Of primary interest is how well this 
approach quantifies obfuscation measures and metrics along cryptographic lines. As part of our work, 
we propose a set of benchmark programs that exercise the effectiveness of current and future 
obfuscation techniques.  
 
2. Software Protection 
Because of the significant amount of resources invested to produce intellectual properties such as 
proprietary algorithms, software protection remains a vested interest to the commercial industry.  In 
military applications, commanders concern themselves with unprotected software that may 
compromise military capabilities or inadvertently transfer technology to foreign adversaries.  Thus, 
recent research into computer security also investigates scenarios where benign software may be 
operating on a malicious host environment [3]. 
 
Java, as a programming language, is particularly sensitive to de-compilation attempts because Java 
programs are compiled into Java bytecode that runs on virtual machines.  This feature makes Java an 
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attractive choice in producing multi-platform code.  However, bytecode makes it significantly easier to 
understand in comparison with code compiled into native processor machine code. Therefore, Java 
de-compilers (e.g. Mocha, SourceAgain) can recover source code from unprotected, compiler 
generated, Java bytecode easily [4].  Even without the tools, Java executables contain internal 
symbolic information, such as class names, giving reversers extremely helpful information in 
extracting the original source [5]. 
 
2.1 Theoretical Model 
 
Software obfuscation is defined in [1] as a process where an alternate obfuscated version of the 
original code preserves the original’s functionality yet does not allow an adversary to recover any 
information about the original code.  Specifically, a polynomial-bounded adversary should not be able 
to extract any more information when given an obfuscated program than the information that can be 
extracted by a machine which has black-box oracle access to the original program.  Results from 
theoretical research, most notably several impossibility results in [1], do not completely dismiss 
obfuscation as a valid approach to software protection.  However, it is generally accepted that a 
general solution does not exist under the definition stated above.  Even in research on a defined set 
of function families where positive results are established [6, 7], actual implementation of the 
obfuscator is not presented.  
 
2.2 Anti-reversing Techniques  
 
The cataloging of anti-reversing obfuscating transformations in [2] and follow-on work in [3] provide a 
basis for practical software protection techniques.  Transformations are commonly adopted from other 
computing fields such as compiler design, file compression, and software engineering.  
Transformational obfuscation operates within the assumption that given enough time, effort, and 
resources, a competent reverse engineer will be able to break any obfuscating technique.  In contrast 
to the theoretical perspective, using obfuscating transforms is an admission that perfect, higher levels 
of security may not be available at this time.  However, the authors in [2, 3] and commercial 
developers of obfuscators advocate that some protection is better than none.  And while this 
concession may not satisfy security and cryptographic experts, [2, 3] provide a functional baseline to 
work and experiment with.  
  
Because it is assumed that obfuscation techniques are delaying tactics, it is important for a developer 
and customer to know how much delay can be expected for a given technique.  [2, 3] established four 
properties, derived from seven proposed metrics based on software engineering principles, to 
evaluate the quality of generic software obfuscation techniques.  Table 1 provides a short explanation 
of the four properties [3, 4]. 
 

Properties Explanation 
Potency Difficulty in understanding the obfuscated code 

Resilience Difficulty in automating a tool to de-obfuscate obfuscated code 
Cost Penalty in execution time/memory space incurred by obfuscated code 

Stealth Statistical similarity of obfuscated code compared to pre-obfuscated code 
Quality = (Potency, Resilience, Cost, Stealth) 

Table 1. Characteristics of obfuscating transformations 
 
It is important to note that potency and resilience, two out of the four properties, are heavily 
dependent on human cognitive ability which is inherently difficult to measure. Potency is by definition 
related to human cognition.  Resilience is also tied to an attempt to measuring human cognitive ability 
because de-obfuscating programs must be first programmed by a person that understands what and 
how obfuscation techniques work.  While [2] uses research in mature software engineering principle to 
derive the metrics and corresponding properties, they are nevertheless definitively weaker than 
metrics used by traditional cryptographers.  For instance, figure 1 is a pedagogical illustration on the 
potential limitation to using metrics based on confusion of human cognition; for some people, it takes 
mere seconds to recover the original text while for others, it may take much longer.  The result of the 
AltaVista-Bablefish translator as a language “de-obfuscator” is provided in brackets furthering the 
argument that resilience is also related to a programmer’s cognitive ability [8].   



 
 

 
Figure 1.  Obfuscations of “136” in increasing order of difficulty for a reader unfamiliar with the 

traditional form of Chinese characters and their pronunciations.   
 
In contrast, it is currently computationally infeasible for an adversary to break a properly implemented 
encryption cipher such as the AES which provides 2128

 

 bits of security no matter how well the attacker 
understands cryptography.  This limitation suggests that an obfuscation technique with more 
generically quantifiable metrics independent of human cognitive ability would appeal to both practical 
obfuscators and theoretical cryptographers. 

Three attributes generally characterize software protection techniques: applicability, efficiency, and 
security.  The Holy Grail of software techniques would be one that is general in application, secure in 
implementation, and efficient in execution.  Thus far, however, research in theoretical obfuscation has 
yielded positive results that are provably secure but applicable for only specific functional families 
(Lynn and others, 2004:11).   
 
Practical obfuscation approaches use software engineering metrics that are easily applicable to 
existing software.  Security metrics, however, remains a research area because breaking software 
protection techniques is in part art and in part science.  Software engineering metrics were conceived 
as metrics to gauge the likelihood of coding errors, not as security metrics.  Thus, the software 
engineering derived metrics and corresponding properties for evaluating software obfuscation are 
understandably weaker than metrics used by traditional cryptographers in evaluating cryptographic 
algorithms.  This suggests obfuscation techniques with more generically quantifiable metrics, 
independent of cognitive ability, would appeal to both experts in practical and theoretical obfuscation.  
Table 2 presents software engineering metrics in white (Collberg and others, 1997:8) and 
cryptographic metrics in grey for comparison (“National Institute,” 2001).  We note that the software 
engineering metrics are traditionally used to assess program complexity where an increase in a metric 
indicates increased overall complexity while the cryptography metrics are used to indicate the 
randomness of a bit string produced by encryption algorithms or pseudo-random number generators.  
A bit string with high randomness means that it is difficult to guess the outcome of a bit with greater 
than 50% accuracy.  

Table 1.  Measures in Software Engineering and Cryptography 
Metric Short description 
Program Length Number of operators and operands in P 
Cyclomatic Complexity Number of predicates in functions 
Nesting Complexity Number of nesting level of conditionals 
Data Flow Complexity Number of inter-basic block variables 
Fan-in/out Complexity Number of formal parameters and/or global variables 
Data Structure Complexity Number of fields, size, type of static data structures 
Object-Orientated Complexity Number of depth, inheritance, methods, coupling 
Frequency   Proportion of 0’s and 1’s 
Frequency Within a Block Proportion of 0’s and 1’s within multiple sequences 
Longest Runs of 1’s in a Block Length of uninterrupted sequence of 1’s 
Runs of 0’s and 1’s Number of uninterrupted runs of 0’s and 1’s 
Cumulative Sum Sum of partial sequences after mapping (0,1) to (-1,1) 
Random Excursions Number of cumulative sum cycles with 0 sum 
Random Excursions Variant Number of sums within cumulative sum cycles 

 
This research proposes a software-only approach using compositional function tables (CFT) 

and embedded symmetric key cryptography to produce functional entropy on a small scale for the 
protection of deterministic functions.  Functional tables are the perfect white-box because only the 
input/output pairs are made available.  Thus, a function table provides just the black-box information.  



 
 

By replacing a deterministic function with a function table, we strip the structural implementation of the 
function to prevent white-box analysis by the adversary. 
 
The objective of this research is to examine the effectiveness of symmetric key cryptography and 
CFTs as a software-only protection technique.  Of primary interest is how well this approach quantifies 
obfuscation strength with measures and metrics consistent with ones used in traditional data 
cryptography.  In addition, this research proposes a set of benchmark programs to demonstrate this 
approach and may be useful in determining effectiveness of current and future obfuscation 
techniques.  Finally, we evaluate the generality and efficiency of the CFT approach.  
 
We select Java programs and methods to implement our experiments because decompiled Java code 
of unprotected functions is very similar to the original Java source code providing a greater contrast 
between decompilations of protected and unprotected code.  Compiled Java code is also more 
understandable because it compiles into a well-documented bytecode format which retains internal 
symbolic information, such as class names, that help the adversary and Java de-compilers, such as 
Mocha, reconstruct the original source code and logic.  In contrast, C/C++ code compiles into 
microprocessor instructions that contain less information about the original code and therefore gives 
less information to an adversary.  Popular C/C++ reverse-engineering tools, such as OllyDbg and 
IdaPro, are dissassmblers which generates the assembly level instructions, rather than the original 
source code making qualitative comparison against original source code more difficult.  Furthermore, 
Java is a popular choice for web applications that often execute on un-trusted environments.  For 
these reasons, we chose Java as the language to implement this research’s experiments (Travis, 
2000; Torri and others, 2007). 

1.1 3.3 Alternate Obfuscation Model 
 
The VBB model indisputably describes the ideal criteria for software obfuscation.  However, 
theoretical research has shown that this ideal model is impractical.  Therefore, an alternative model is 
necessary to describe a set of obfuscation criteria that does not lead to the same impossibility results 
produced by Barak and others.  
 
The three criteria established by the VBB model state that an obfuscated version must preserve 
functionality of the original, perform in equivalent time to the original, and reveal no information about 
the original that cannot be obtained by having only black-box access to the original.  This research 
examines a model that removes the first criterion:  function preservation.  Removing this criterion is 
clearly a weakening of the VBB model, but in turn shelters this new model from the established 
impossibility results.  Of note, this alternate model clearly distinguishes between the structure of 
program (white-box information) and the function of the program (black-box information) to reflect our 
observations in Table 1 where we identified differences between the data cryptography model and the 
general software obfuscation model.  McDonald and Yasinsac propose that obfuscation, at best, 
protects the structure, protects the functional relationship, or protects both naming this the intent 
protection model (McDonald and Yasinsac, 2007:2-3).   
 
Other research works also support black-box protection of the function output as a means to 
obfuscate the white-box structure.  Sander and Tschudin propose a protocol for computing with 
encrypted functions (CEF) under the premise that reversing the underlying proprietary functions 
generally more useful than full reversal of the program (Sander and Tschudin, 1998b:2).  Loureiro and 
others uses a Boolean equation set representation of the function table approach with the McEliece 
asymmetric cryptographic algorithm which encrypts the output as an obfuscation technique (Loureiro 
and others, 2002:4).  Chow and others also use combinations of function tables to integrate their 
white-box version of the AES algorithm to protect other functions (Chow and others, 2002:252).  
These works all emphasize the need to modify the functionality of the original function as part of an 
obfuscation technique.  We noted that the output is unusable until it is converted back to some usable 
form, which is usually done on a trusted environment.  Figure 5 graphically illustrates this intent 
protection model for comparison with the VBB standard obfuscation model in Figure 3 and the 
standard cryptography model in Figure 2. 
 
While it appears that this is the client-server model, there is a key distinction.  Traditional client-server 
hides the proprietary algorithm on the server side forcing the server to bear the computational load.  
In contrast, the objective of the partial client-server model is to safely offload the computational load 



 
 

onto the client.   For example, a MaS agent, such as the ones described in the previous chapter, can 
perform secure computations within an un-trusted execution environment and then send information 
back to the issuer. 

 

Figure 1.  Intent Protection Obfuscation Model 
 
Intent protection weakens the first criterion (functional preservation) of the VBB model.  However, by 
providing functional confidentiality, it may be possible to strengthen protection overall through the third 
VBB criterion (structural confidentiality).  Because VBB requires functional preservation, analysis of 
black-box information in the original and obfuscated version of the function may allow the adversary to 
extrapolate the white-box information.  This is acceptable, though unintuitive, in the VBB model, 
especially when we know that adversaries use a combination of black-box and white-box attacks.  
Conversely, if it is acceptable within an obfuscation model to change the functionality of the 
obfuscated program, then it is possible to apply techniques that prevent deduction of white-box 
information through black-box analysis.   
 
We thus revisit data cryptographic techniques since their primary function prevents black-box 
analysis.  We note that any encryption of the output is still in a white-box attackable environment and 
thus methods for white-box encryption require examination.  Figure 6 illustrates the data cryptographic 
model on the left with the intent protection model on the right for comparison.   

 

Figure 2.  Data cryptography (left) and Intent Protection (right) 

 
As stated previously, we divide a function into its functional behavior and its structure.  While an 
encryption only makes the output appear as random output, we postulate that an obfuscator must 
also protect the white-box information.  We could achieve this by either removing structural 
information or by emulating structural randomness.  Thus, this research examines the input/output 
produced by random programs for comparison with similar sized functions to gain understanding on 



 
 

the relationship between the randomness in a program structure with the randomness in the output.  
To the best knowledge of this research, the relationship between random structures and 
corresponding output characteristics is unknown.  If obfuscation is analogous to cryptography, then 
we can make the same analytical comparisons on the output.  For instance, in order to gauge how 
well an encryption produces a pseudo-random output, it must exhibit characteristics comparable to a 
truly random sequence.  The National Institute of Standards and Technology (NIST) published a list of 
established metrics that can empirically determine how closely a sequence exhibits randomness 
(“National Institute,” 2001).  Methods to accurately assess the level of randomness of function or 
program structure are, at this point, unknown and a reason why it is difficult to practically evaluate 
practical obfuscation techniques under VBB model’s security test posed by the third criterion.   
 
This research postulates that any program generated by randomly selecting bit manipulations 
between the input and output is a random program.  Specific implementation details on how this 
research creates random programs are in the experimental section.  By creating randomly generated 
programs, it is possible to examine their output using statistical measures.  If random programs 
generate non-random output, then it is possible that obfuscation through randomization of structure is 
sufficient because the output does not correlate strongly to the structure.  An indicator of this would be 
a large set of random programs that produce the same output pattern.  If random programs tend to 
generate random output, then any program, original or obfuscated, that does not produce random 
output may indicate that a strong relationship between black-box patterns and white-box structure 
exists.  Therefore, even if randomness is induced into the structure, it may never be sufficiently 
enough due to the predictability of the output.  Security then requires a mechanism to produce 
randomness in the output which intent protection model supports (Hofheinz and others, 2007:17; 
Algesheimer and others, 2003:5). 
 
Figure 7 illustrates the comparisons made in this research under the intent protection model relative to 
the comparisons made in the VBB model.  In summary, the obfuscation community has yet to agree 
on how to make structure comparisons for white-box security.  Without consensus on the structural 
security measure, it is difficult for practical obfuscation techniques to claim meeting the VBB security 
test as shown by the leftmost arrow.  Thus, we propose the random program model, where O(P) is 
made to functionally and structurally resemble random programs (PR), as a derivation of the random 
oracle model in cryptography (Bellare and Rogaway, 1995).  Constructing PR serves as an 
intermediate step in understanding and evaluating function structure and output patterns.  We can use 
the results to develop techniques so that O(P) exhibits both functional and structural characteristics of 
PR.  

 

Figure 3.  Obfuscation and Random Programs 

Canetti and others prove in their work that work that techniques secure in the random based 
methodology may be insecure in implementation.  However, we note that the cryptographic 
community uses the random oracle because the standard cryptography model based solely on 
complexity measures is difficult to prove.  Therefore, our appeal to randomness is primarily to 
establish a sanity check on obfuscation approaches, as recommended by Canetti and others in their 
conclusions, in absence of a stronger security model (Canetti and others, 2006). 



 
 

Metric 

Black-box Metrics 
Black-box metrics were adapted from a NIST test suite for pseudo-random number generators.  For 
clarification, we consider each output bit as a generator of a bit string and use statistical analysis to 
determine if patterns exist for each bit enabling the adversary to guess subsequent bits within the bit 
string.   
 
We list in Table 7 the statistical tests used in this research and a summarized explanation for each 
test (“National Institute,” 2007).  We recognize there are existing test suites such as JDieHard, 
NESSIE, and the one provided by the NIST; however, these suites were designed for random 
program generators and some tests required minimum bit string lengths of 10,000 bits or greater.  
Thus, we had to selectively implement tests that could provide results on much smaller bit string 
lengths due to our experimental benchmarks that have a relatively smaller input space. 

Table 2.  Statistical Test to Analyze Function Output 
Test Explanation 

Frequency (Sequence) Ratio of 1’s to 0’s produced in an output bit 
Frequency (Output) Ratio of 1’s to 0’s produced by all output bits  
Longest runs of 1’s Longest uninterrupted sequence of 1’s 
Number of 1’s runs Number of runs with uninterrupted sequence of 1’s 
Maximum excursion  Greatest distance from zero achieved when each output resulting in 0 

or 1 is mapped to -1 and 1 respectively and the output’s bit string is 
summed. 

Excursion states Size of the set of distances from zero achieved when each output 
resulting in 0 or 1 is mapped to -1 and 1 respectively and the output’s 
bit string is summed. 

Zero excursion cycles Number of zero excursion cycles.  A cycle the summation of the 
outputs to an m-th bit and back to the origin when each output bit 
resulting in 0 or 1 is mapped to -1 and 1 respectively; m is increased 
incrementally until it reaches the end of the bit string.  

Approximate entropy Percentage of output bits flipped when a single input bit is flipped; 
used when gray-code input is used. 

 

White-ox Metrics. 
Metrics to evaluate the randomness of a structure is the subject on concurrent research within the 
PEG research group.  Because the proposed approach removes the program structure by converting 
a function into a two dimensional representation, this research can subjectively examine the structural 
obfuscation of using CFT using various Java decompilers.  We derive quantitative security measures 
from the steps that an adversary needs to perform to break apart the CFT along with the 
computational complexity associated with each step, as stated in section 3.5; the theoretical 
maximum security according to computational complexity is directly correlated to input size. 

3.11.3 Side-channel Metrics.    
Performance and memory costs are important because they determine the practicality of the 
obfuscation.  We measure performance as execution time in seconds and measure cost in terms of 
memory size in bits.  These metrics are common, non-subjective, and understandable within the 
computer science.  Because cost of the CFT implementation is very different from the time it takes to 
generate a CFT implementation, a developer must decide whether generation costs should factor into 
the cost of obfuscation.  For consistency, we only consider the memory cost of the deployed 
obfuscation and the performance running the obfuscated function when evaluating an obfuscated 
program.  We note that multiple obfuscations of different functions will cost less to generate because 
the paired encryption table only needs to be generated once. Thus, future obfuscations of functions 
with the same bounded input-size incur incrementally less generation costs because we can pair it 
with any pre-enumerated encryption table.   



 
 

We compare the above metrics against the four properties of an obfuscation proposed by Collberg 
and others’ work summarized in Table 8 (Collberg and others, 2004:738).   
 
 
3. Functional Composition and Entropy 
 
In [9], McDonald and Yasinsac suggest three broad application categories of small or bounded input-
size programs that motivate our obfuscation approach: sensor nets, positioning devices and financial 
programs.  All of the above applications may perform mathematically intensive calculations, operate 
on small inputs (e.g. 16-bits) or deploy in hostile operating environments.   
Our approach attempts to provide the core framework in developing secure code by using the concept 
of function tables.  In [10], it is postulated that every deterministic algorithm produces one function 
table thus represents an atomic function.  Furthermore, functional composition (f o g) or f(g(x)) is also 
an atomic operation which is the main security implication of using functional tables.  Because the 
composition of two atomic functions is also an atomic function, it is not possible to find a seam 
between the two composed functions or any implementation details within either of the composed 
functions.  In addition, table lookups for all atomic functions are identical protecting information 
leakage from dynamic analysis of control flow.  These facts are important because [2] specifically 
proposes that a reverse engineer typically analyzes a program’s data structure and control flow in 
order to gain understanding of any application. 
3.1 Function Tables of Composite Functions 
A generic function, is a function f: {0,1}x -> {0,1}y, which takes a binary input, x, and produces a binary 
output, y.  A generic encryption function, E, is also a function that takes an input and generates an 
output.  Only a few characteristics distinguish an encryption function from a generic function.  First, 
encryption functions have the property where the input and output generated are the same size.  
Second, the relationship of input and output for a particular encryption is identified by an key, {0,1}k

        

.  
The relationship between f, E, x, y and k are shown in figure 2.  Figure 2 also shows that a functional 
table can be produced by both the function and encryption function 

 
Figure 2. Generic function (left) and generic encryption function (right) diagram with corresponding 

function tables 
We reiterate here that every deterministic function produces one function table.  It is also noted here 
that an infinite amount of functions can produce the same function table.  Therefore, a function table 
is a black-box representation of the function because the white-box details, exactly how the function is 
implemented, cannot be ascertained from the function table alone.   
Figure 3 is an illustration of a composite function of f and g and their respective function tables.  
Composition on two functions is possible if the output of the first function is a subset of the input of the 
second function.  It can be seen that the function table of the atomic composite function masks 
function f and g’s individual input/output relationship.  Additionally, the two functions are inseparable 
from the composite table because there is no obvious seam joining the two functions.  Furthermore, 
the composite table uses the same lookup table operation as a single function table making 
composite tables indistinguishable from a single function table from an operational perspective.   



 
 

 
Figure 3. Function composition of f and g where ym is a subset of x

3.2 Encryption Function 
n 

The atomic properties of the composite function table are the fundamental basis for our approach.  
Because the behaviors of the functions in the composed function are hidden, it is possible to embed a 
key into a symmetric key encryption without fear that the shared key used will be leaked. 
Encryption is essentially a recoverable semantic translation of some input.  As a base case example, 
[10] uses an one-bit input, one-bit output function to illustrate the functional table approach.  There are 
exactly four semantic transformations, or behaviors, available to a function that operates on one bit; 
these are listed in table 2.  The third and fourth semantic transformations, however, unsuitable for use 
as an encryption function because they produce irrecoverable output.   

Semantic Transformations  Sample Input Sample Output 
1. Preserve the input  0, 1, 1, 0 0, 1, 1, 0 
2. Flip the input 0, 1, 1, 0 1, 0, 0, 1 
3. Flip 1’s, preserve 0’s 0, 1, 1, 0 0, 0, 0, 0 
4. Flip 0’s, preserve 1’s 0, 1, 1, 0 1, 1, 1, 1 

Table 2. List of semantic transformations and sample input and output 
The first and second semantic transformation is the best obfuscation possible for this trivial one-bit 
case because the adversary has a random chance of guessing whether the first or second 
transformation was used.  It is possible, as in [10], to see how this can extrapolated to multiple and 
stronger bits of encryption.  Popular encryptions, such as DES and AES, are recoverable semantic 
transformations whose behavior and recoverability is identified through the key and mode of 
operation.  Electronic code book (ECB) is used due to the necessity in enumerating input/output pairs 
for the encryption function table.  Security implications of this design decision are discussed in section 
4. 
A function table that is a composition of a generic function, f, with an encryption function, E, hides: 

1. Input/output relationship of f 
2. Input/output relationship of E 
3. Key embedded in E 
4. Seam between f and E 

 
3.3 Decryption Function 
Until the encrypted composite function output is decrypted, it is protected but un-useable because the 
desired output is strictly that of the function composed with the encryption.  The remapping of 
input/output is inconsistent with the theoretical obfuscation model property of function preservation.  
However, this also means the impossibility results in [1] does not apply to the composite functional 
table approach.  In addition, the developer is provided some flexibility in deployment of a protected 
function through placement of the decryption function.   
3.3.1 Partial Client-Server Deployment 
If bandwidth is not a concern, then we may possibly release only the secured function and require the 
remote application to send the computed and encrypted information back to a trusted source for 
decryption.  The information can then be sent back to the remote application if necessary.   
Figure 4 illustrates how this method is distinct from the classical client-server model.  In the classical 
client-server model, the protection is achieved by removing all sensitive calculations from the remote 
application and running them only within a trusted environment placing the burden of computation 
expense completely on the server side.   
In this configuration, a standard decryption that corresponds to the embedded key encryption can be 
used because the key does not need to be embedded into the decryption function.  Any padding to 
the input or output can also be handled on the trusted client-side.  Thus, the remote application takes 



 
 

input and passes an output from the composed function table back to the server.  The decrypted 
output can either be used directly by the server or sent back to the remote application as needed 

 
Figure 4.  Classical client-server(top) and partial client-server (bottom) 

The partial client-server model shares a weakness with the classical model; both have bandwidth 
requirements that may become a bottleneck.  However, this deployment does illustrate how it is 
potentially possible to securely offload intensive process to the remote applications. 
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Quantitative Analysis of Black-box Data. 
We analyze the sets of 1,000 randomly generated BENCH circuits with the statistical tests listed in 
Table 7.  We use the input/output sizes of the benchmark programs listed in Table 6 as parameters 
for the RPG.  Because the impact of the internal structure is currently unknown, we set the parameter 



 
 

for the number of intermediate nodes to 100, 300 and 500.  For the circuit c17, we generated an 
additional random program set with six intermediate nodes to match the original circuit description. 
 
First, we conduct an analysis on the collective random function output.  Each function produces an 
output signature which is the output sequence of the function based on an input sequence.  The total 
possible number of unique signatures is   where out is the number of output bits and in is 
the number of input bits.  We check the output signatures of the random function sets for uniqueness 
using a CRC32 checksum.   
 
Numbers within sets of identical output signature are an indicator of functional equivalency and 
structural diversity.  For a set of randomly generated programs to produce large sets of non-unique 
output signatures, it may be a signature that exhibits weak correlation between structural pattern and 
output signature.  If we intend to obfuscation white-box information by emulating randomly 
constructed circuits, then signatures with a large number of candidate structures are good candidates 
for obfuscation.  In practical terms, it means that we can swap the structure of one member within the 
set with another member in the same set.  This obfuscates the original structure because we 
produced the alternate structural logic randomly without any knowledge of the original structure and 
therefore the replacement structure cannot leak information about the original structure. 
 
Random function sets of 5-2-6 and 5-2-100 yielded 125 and 71 functions that produced non-unique 
output signatures respectively presented in Table 9.  The other random function sets did not produce 
any duplicate output signatures. 

Table 3.  Non-unique Output Signature Characteristics of 1000 Random Functions 
5-2-6 5-2-100 

Set size of identical 
output signatures 

Number 
of Sets 

Set size of identical 
output signatures 

Number 
of Sets 

2 32 2 7 
3 2 11 1 
4 8 12 1 
5 1 16 1 
9 2 18 1 

  
 
We expected fully unique signatures for even the small input and output parameters because 432 
unique signatures are possible.  For a set of 1,000 random functions to exhibit signature collisions 
may indicate that structural diversity is great for smaller input/output parameters.  We observe that the 
intermediate node is a factor in producing signature collisions.  Increasing intermediate node size 
causes a drop in collision frequency but an increase in collision concentration where the chance of 
collision is less likely, but in the case of collision, the collision set tends to be greater in size.  We 
graph our observations regarding intermediate node size and signature collisions in Therefore, 
obfuscation of a complete white-box structure may be more effective with partial obfuscations of 
smaller input/output size with a large intermediate node size so there are several candidates for 
replacement.   



 
 

 

Figure 4.  Signature Collisions in 5-2-X 

 
Figure 5.  Signature Collision to Intermediate Node Size 

 
We then perform analysis on each individual benchmark program and corresponding function set.  For 
clarity, we display only the gray code input sequence in the following tables.  It is important to note 
that metrics on run lengths and excursion states are dependent on input sequence.  In addition, using 
gray code input provides the avalanche metric for comparison between the benchmark output and 
random function output.  We recognize that there are many there are many possible sequences that 
exist where we flip only one input bit.  We use the gray code as an exploratory technique to observe 
the avalanche affect of input bits; the avalanche effect on output bits for cryptographic ciphers should 
be observable using gray code input.  We verify by using a black-box analysis of the output from 
1,000 AES encryption output tables using a gray code input sequence.  Tables illustrating the results 
of the statistical analysis comparing benchmark and respective input/output size random functions are 
found in the Appendix; the result of each test by output bit is provided so that the distinction between 
benchmark and random functions can be visualized.  We use averaging across the 1,000 random 
functions on each output bit to provide a result.  The experiments provide a picture of the expected 
values of the seven statistical tests for a randomly generated program of a certain input/output size.  
From the results of this experiment, it appears that random functions generate consistent results for 
each output bit across all tests which can be contrasted against the output bit behavior in the 
benchmark functions.   
 
In Figure 17, Figure 18, and Figure 19, we graph the standard deviation for all bits in the output by 
test for some of the benchmark functions and their respective random program set.  For these graphs, 
we included the binary counter sequence.  We observe disparity in results; random program sets 
produce significantly less diversity in their output bits than the benchmarks as shown by the flat lines 



 
 

generated by the random program sets in the three figures.  We note that our two input sequences 
produced similar results. 
 
Within this limited set of benchmarks, it appears that the number of excursion states is the biggest 
indicator of an unprotected benchmark function versus the set of random functions while the number 
of zero cycles tends to be a poor indicator.  In addition, this black-box analysis on deviation from 
expected randomness values lets us know which statistical test best isolates non-random behaving 
bits in the output.  We can then target the control flow of the bits that do not exhibit random behavior 
with structural randomness.  This information is useful in cases where we cannot use black-box 
protection and the security must rely only on white-box structural entropy. 

 
Figure 6.  Standard Deviations of All C17 Output Bits by Metric 

 

 
Figure 7.  Standard Deviations of All y = a * b + c Output Bits by Metric 

 

 
Figure 8.  Standard Deviations of All Fibonacci Output Bits by Metric 



 
 

We conducted a statistical analysis of AES encryption with 1,000 keys and equal input size of five bits 
to examine the feasibility of protecting a c17 circuit from the ISCAS-85 circuit library with AES.  The 
standard deviations between AES and the random program set for each metric, shown in Figure 20.  
Standard Deviations of All AES Output Bits by Metric was significantly closer to zero than any other 
experimental function.   

 

Figure 9.  Standard Deviations of All AES Output Bits by Metric 

The averages and standard deviations can also be found in Table 10; per bit graphs are not included 
because it is difficult to clearly represent all 128-bits graphically.  We note that we adjusted the 
random program set parameter from 100 and 300 to 500 and 1000 in order to accommodate the 
significantly larger output size in AES.  Different results between the AES and random program set 
produce approximately the same results.  The metrics provided by these random sets are valuable 
because the results for these metrics are unknown for random program structure.  Thus, these 
metrics provide a comparison point for functions that may have the parameters such as input size, 
output size, or intermediary node size. 

Table 4.  Statistical Results of AES and a Random Program Set 
Function % of 

1's 
Longest 1's 

Runs 
Excur. from 

Zero 
Zero 

Cycles 
Excur. 
States 

Runs 
of 1's 

AES avg 0.50 4.00 6.62 0.69 8.96 8.25 

AES std dev 0.00 0.00 0.09 0.03 0.12 0.08 

5-128-500 avg 0.50 8.05 18.34 1.23 19.51 4.55 

5-128-500 std dev 0.01 0.35 0.32 0.09 0.29 0.09 

5-128-1000 avg 0.50 7.95 18.35 1.12 19.51 4.60 

5-128-1000 std dev 0.01 0.30 0.29 0.09 0.26 0.09 

 
We note that the metrics did not change significantly between the 500 and 1000 internal node set or 
random functions indicating that intermediate node size may not be a significant factor on the 
randomness of individual output bits.  This was also true for the benchmark programs even though we 
did produce a small percentage of signature collisions in the 5-2-X set of experiments.  Standard 
deviations also remained small though we note that the standard deviations of the two random set in 
our 5-2-X with AES experiments mirrored each other which could indicate that our RPG construction 
is a factor.  No functions within the two 5-128-X sets shared the same output signature.   
 
In addition, the test verified that the 1,000 AES keys produced 50% approximate entropy on the 
output as expected when we use gray code input.  We note that the unprotected benchmark functions 
on average produce only 26% approximate entropy.  This means that a change in a single input bit 
has significantly less impact, or more specifically, less of an avalanche effect on the output bits of 
randomly generated circuits.  Therefore, our results indicate that structural entropy alone does not, on 
average, produce the same black-box entropy as cryptographic functions.  We are interested in the 



 
 

approximate entropy results specifically because the greater entropy tends to hinder black-box 
analysis.  We graph our results in Figure 21.  The first column is our verification of approximate 
entropy on AES, followed by the approximate entropy observed in our randomly generated sets.  We 
obtained the fourth column results by using an AES encryption table to protect the output of the c17 
circuit.  This did not increase approximate entropy because ECB does not hide output patterns.  We 
achieved approximate entropy results similar to AES when we applied two different padding schemes 
to diffuse the output space prior to applying the AES encryption, as shown in the last two columns. 
 

 

Figure 10.  Approximate Entropy of AES and 5-128-X 

Analysis of Side-Channel Data. 
CFT is not fixed to an implementation because the security concept is to prevent adversary analysis 
by flattening of functional structure to two-dimensions.  Because this research implemented the CFT 
using text files, the protected programs took longer to run due to frequent file accesses; the disk 
accesses incurred cost penalty in performance time because disk access operations are slower than 
the operations in the benchmark programs which did not require significant processing power. 
 
In complexity terms, a lookup operation in the encryption table is constant time, O(1) making CFT very 
scalable.  Constant time is achievable because every entry is the same size and we can provide the 
entries, input order sorted, so that an index search is possible.  We can use the original cryptographic 
primitive to decrypt and recover the output and we know that the cryptographic primitive runs in 
polynomial time.  If we use the function table for decryption, we could first apply sorting to the output 
table and then use a binary search to achieve O(nlogn) performance.  We cannot use the same 
indexing method as the encryption table because the ciphertexts sparsely populate too large a range.   
 
We found the file sizes consistent to our estimates of 2n

For BES representations of CFTs, we found early in our experiments that storing the BES as a file 
take much more memory space than the CFT in our implementation.  For a BES, we cannot estimate 
the length or the number of prime implicate for each output bit.  However, we are attempting to 
achieve random output so we expect each output bit to produce significantly long Boolean equations 
making textual representation very inefficient.  We do not propose BES implementation as a text file; 
we generate it as a blueprint for a minimized sum-of-products two-dimensional gate structure that can 
be then implemented as code.  We implement BES textually mainly to examine this structure 
generation for future experimentation.  In terms of performance, BES runs with complexity O(n) where 
n is the number of output bits because each output bit has its own Boolean equation that runs in 
constant time. 

 * m bits where n is the number of input bits 
and m is the number of output bits.  We note that a side effect in our implementation under the NTFS 
file system test environment is that Windows file explorer reports a difference between the actual file 
size and the size the file takes on the disk.   

 
The research shows that random programs can be a comparison tool for intent protected obfuscation 
techniques such as CFT.  While there is yet to be a set of agreed upon metrics to compare program 
structure, there are metrics in use that analyzes function output.  The results shown in this chapter 
show that programs with randomly generated structure produce randomness across the output bits.  
The randomness closely equals that of AES, a strong encryption algorithm.  In the same way that 
functional randomness produces output that is hard to discern a pattern, structural randomness may 



 
 

produce program structure that is difficult to analyze.  Thus, if it becomes possible to accurately 
assess structural randomness, it will be possible for an obfuscation to be intent protected by creating 
an obfuscated version of a function that is both structurally random and functionally random.  In the 
absence of such metrics, this research uses CFT with symmetric encryption to remove the structural 
details of a program while creating measurably random output as an obfuscation technique.  
 
 
5. In conclusion 
Our work demonstrates the generality and efficiency of the CFT approach using simple Java 
programs and deterministic functions implemented as combinational logic circuits. We also use such 
benchmark programs to consider the nature of structural randomization induced by obfuscating 
algorithms based on iterative selection and replacement strategies. As a contribution, we consider the 
correlation between structural (programmatic/syntactic) randomness versus functional randomness. 
We report positive results on the efficacy of our approach to induce statistical properties by analyzing 
whether structural randomization produces entropy in the output bits of protected programs. The 
approach shows promise to add yet another layer of protection against potential adversarial reverse 
engineers. 
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