
Hiding Circuit Components
Using Boundary Blurring Techniques

James D. Parham, J. Todd McDonald,
Yong C. Kim and Michael R. Grimaila

Department of Electrical and Computer Engineering
Air Force Institute of Technology

Wright-Patterson AFB, OH 45433-7765
Email: james.parham.2@us.af.mil;{jmcdonal;ykim;mgrimail}@afit.edu

Abstract—Protecting circuitry from reverse engineering is
extremely important for critical technologies. When systems
designed for security become compromised, millions of dollars
and countless labor hours may be required for redesigning
new protection circuitry. Similarly, an organization using reverse
engineering techniques for reproducing systems can do so with
significantly lower costs.

Component identification is an essential step to reverse en-
gineering. Techniques which increase the necessary time for
discovering circuit components, and in turn delay or even defeat
component identification, increase the level of circuit protection
against reverse engineering and other adversarial attacks. In this
paper, we discuss our Java based component identification tool
implementation. We also introduce two component hiding algo-
rithms and show they effectively defeat component identification.

I. I NTRODUCTION

Protecting circuitry from reverse engineering is extremely
important for many electronic systems. Without implementing
some form of protection, an adversary may easily gain access
to sensitive information contained within the circuit. For
example, the U.S. National Security Agency has authorized the
Advanced Encryption Standard (AES) for encrypting classified
information on Unmanned Aerial Systems (UAS). Without
providing protection to AES circuitry, adversaries could pos-
sibly obtain secret keys enabling interception of the data link
to substitute their own video feeds or take control of a UAS
[1].

Billions of dollars are spent each year developing tech-
nologies. The U.S. Department of Defense Fiscal Year 2009
budget request for procurement research and development was
in excess of $183 billion for modernizing and meeting future
threats [2]. Adversaries gain access to technologies faster and
more cheaply when they reverse engineer system circuitry.

Component identification is one method used by reverse
engineers for discovering key circuit elements [3]. There
are several steps involved for the reverse engineer using
this method. First, the circuit of interest must be physi-
cally obtained. Next, by exposing the circuit’s transistors,
the logic gates are identified and then schematics created.
From the schematic, circuit architecture and components are
identified. Nohl et al. used this technique when revealing the
cryptographic cypher of the Mifare Classic Radio Frequency

Fig. 1. Exposed transistors of the Mifare RFID are shown on the left and
results after gate identification are shown on the right [4].

Identification (RFID) tag. They first exposed circuit transistors
enabling identification of gate structures and the connections
between them. Figure 1 shows a small section of exposed
transistors and the results of gate identification. Then they
identified the area of the circuit chip containing cryptographic
components. Finally, they discovered the cryptographic keys
making it possible to access the Dutch transit system where
the use of these cards were intended. When they testified
before the Dutch government detailing their accomplishments,
approximately $2 billion had been invested in the ticketing
system [4].

Organizations exist with the sole purpose of discovering the
technology inside integrated circuitry with expertise in chip de-
layering and materials characterization [5]. The real challenge
is preventing clustering of such transistors and gates enabling
successful component identification and preventing a circuit’s
intent to be reverse engineered by adversaries or competitors.
Delaying or preventing the identification of a circuit’s intent
is the primary goal of our component hiding techniques.

Prior to our research, a component identification tool was
not available for the general public. With the only subcircuit
enumeration algorithm known to us, we implemented an
identification tool to assist our effort of evaluating our com-
ponent hiding methods. After implementing the component
identification tool, we explored techniques for hiding circuit
components. This paper discusses our component identifica-



Fig. 2. An five input two output example circuit graph. Triangles represent
NAND gates and the remaining shapes represent inputs or outputs.

tion tool and the algorithms developed for effectively hiding
components. We also discuss the impact of our protection
methods on circuits realized using FPGA technology.

II. COMPONENT IDENTIFICATION TOOL

We perform component identification in Boolean logic
circuits by supplying a circuit under investigation to our Java
based identification tool and efficiently enumerating candidate
subcircuits for comparison against a known component library.
The number of inputs and outputs for the candidate compo-
nent, or I/O space, is the first comparison for equivalence. We
compare candidates and library components with matching I/O
space using truth table analysis. All matching components are
saved for later reference to the original circuit.

A. Circuit Description Files

We use both BENCH file format and IEEE Std 1076-1993
compliant structural VHDL format for describing Boolean
circuits. The BENCH file is a netlist describing circuit gates
and the connections between them. Our protection tool imports
a circuit by reading this descriptive file. An excerpt of the
ISCAS-85 c880 benchmark BENCH file is shown in [3]. Our
circuit protection tool generates the synthesizable structural
VHDL to allow synthesis and evaluation of circuit perfor-
mance [6]. In Section II-F we discuss the circuits we used
for testing our component identification tool.

B. Modeling Boolean Circuits

We model Boolean circuits using Directed Acyclic Graphs
(DAG) where each vertex represents a logic gate and each edge
represents the connection between them. Directed graphs are
used since flow occurs only in one direction from the output
of a gate to the input of one or more gates. Shaped vertices
allow visual identification of gate types as well as inputs and
outputs. Figure 2 shows an example circuit graph for a five
input two output circuit.

C. Component Library

The component library consists of components of interest
and is subdivided into directories containing circuits with a
specific I/O space. A half adder is a two input two output
circuit and is saved in the directory labeled “2-2” while a full

adder is a three input two output circuit and is saved in the
directory labeled “3-2”.

We developed additional custom components for testing our
component identification tool. Each component has an input
and output size ranging from two to six. We created the circuits
by choosing an appropriate I/O space and randomly generating
each output function. Then logic analysis tools synthesize a
minimized circuit based upon the randomly generated truth
table. The number of gates contained in each component
varies; the smallest containing five gates and the largest
containing 139.

D. Candidate Subcircuit Enumeration

A fully connected graph hasn! subgraphs wheren is the
number of vertices. A fully connected graph is highly unlikely,
but serves as an upper bound for the number of possible
sub circuits [7]. This shows that even small circuit graphs
contain an intractable number of subgraphs. [8] details a can-
didate subcircuit enumeration algorithm with runtimeO(n3).
Because no source code was available, we implemented our
interpretation of their algorithm. The candidate enumeration
is rule based and provides focused unique enumeration of
components. Each of the candidate components are further
classified as fully contained subcircuits meaning each circuit
gate has either all or none of its successors and predecessors
contained in the candidate graph.

E. Equivalence Checking

When we identify candidates, we perform a check for
library modules with matching I/O space. When a match
exists, the identification tool performs truth table analysis
comparing each truth table column for equivalence. Input and
output order effects this analysis, so we compare all input and
output orderings. The tool permutes the input and output order
until a positive truth table match occurs or all combinations
are analyzed. This results in a runtime ofO(n!m!) wheren
is the number of inputs andm is the number of outputs. The
runtime limits us to small component I/O space and is why
we chose our custom component I/O space.

F. Test Circuits

We used a variety of circuits to test our component identi-
fication tool. However, we discuss two significant circuits in
this paper. First, is the ISCAS-85 benchmark circuit c6288.
This circuit is a 16-bit multiplier composed of 224 full
adders and 16 half address and contains 2448 gates. Figure 3
shows a circuit high level diagram. In this benchmark the full
adders are realized using NOR gates only resulting in nine
intermediate gates. The half adders are realized with NOR
gates and inverters and also contains nine intermediate gates.
Our tool considers inputs as a component gate so the full
adder is a 12 gate component and the half adder is an 11 gate
component. We consider the 16-bit multiplier more difficult for
hiding components because of its repeated adder structures.
If a reverse engineer identifies one adder they most likely
can identify all adder components. The ability to hide adders



Fig. 3. High level diagram of 16-bit multiplier [9].

in a multiplier makes it possible to hide similar logic within
larger circuits with fewer repeated structure where hiding is
less challenging.

The second circuit we consider is one of our own custom
circuits. Circuit 33-15-555 is a 33 input 15 output circuit
composed of 12 components from our custom library and
contains 555 gates. The largest component is a six input four
output circuit containing 145 gates. We used this circuit for
verifying our identification tool can identify components with
a relatively large gate size.

Our identification tool identifies all components in both test
circuits. This shows the use of computer tools make com-
ponent identification possible for reverse engineers. We now
focus our attention to ways of countering such identification
methods.

III. B OUNDARY BLURRING ALGORITHMS

The identification tool makes each component input and
output (component boundaries) identifiable. Developing a
technique which no longer allows a clear separation between
components prevents component identification. Any modifi-
cation to the circuit must maintain the same overall circuit
function. Therefore, any changes require recovery within the
circuit or additional external circuitry is necessary for recovery
of original circuit functions. The next sections discuss types of
component boundaries and the two techniques we developed
for defeating component identification.

A. Component Boundaries

Components share boundaries with the circuit, with other
components or both creating nine different boundary cases.
Figure 4 shows a circuitP containing nine components. Each
of these components covers one of nine cases. We consider
components sharing input and output boundary with the circuit
only, caseI, as the most difficult for hiding. The 33-15-555
test circuit contains all nine component boundaries.

B. Multilevel Boundary Blurring

Obscuring the boundary between component requires con-
nections between them which does not alter the circuit output.
We accomplish this using our Multilevel Blurring technique.
This technique uses each identified boundary gate, referred to

Fig. 4. High level diagram of circuit 33-15-555.

as areplacement gate, as a point for applying the blur. We
then determinerecovery gatesby looking at gates three levels
closer to the circuit output. If we can not recover three levels
closer to the output we reduce this by one until level one, two
and three are checked or we determine a suitable recovery
level. If no suitable level exists blurring is not applied to the
selected replacement gate.

Once we select replacement and recovery gates, a work-
ing subcircuit is created using replacement gates as in-
puts and recovery gates as outputs. We add additional in-
puts to the subcircuit so all circuit gate successors are
part of the subcircuit. Now we record the output signature
for each recovery gate. Next we change the replacement
gate type to a randomly selected type chosen from the
set {AND,NAND,OR,NOR,XOR,XNOR}. This modification
causes a change in the signals between the replacement gate
and recovery gate. We again record the output signature of
the subcircuit. From these two signatures we determine which
terms of the modified subcircuit are necessary for recover-
ing the original recovery gate signatures. We use a Quine-
McCluskey algorithm for determining a minimized sum of
products function which recovers the original signature. Using
this function we add necessary gates and connections and for
recovering the original signature. The result is two components
with connections between them which obscures the component
boundary. Table I provides an example of signature before (F0)
and after (F1) changing a replacement gate’s type. The original
circuit function is(A+B)C and is modified toABC. FromF0

you can see terms three, five and seven are the recovery terms
which gives a reduced recovery function ofA′BCF1+ACF1.

Multilevel blurring does not make connections between
component caseI and other circuit components allowing our
identification tool to identify caseI components in circuits
with applied multilevel blurring. This creates a need for a
technique which prevents caseI identification.

C. Don’t Care Boundary Blurring

Don’t Care Blurring is a technique which solves the case
I component problem. Because circuit output functions are



TABLE I
SIGNALS OF A THREE INPUT CIRCUIT WITH APPLIED MULTILEVEL

BLURRING. F0 IS THE ORIGINAL SIGNAL AND F1 IS THE MODIFIED

SIGNAL.

A B C F0 F1

0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 0 0
1 1 1 1 1

preserved, the technique is similar to multilevel blurring.
However, this technique adds additional inputs to a component
which take on a don’t care condition. We, as a circuit designer,
don’t care what the input signal is to the additional input
because the subcircuit output is not effected by it.

Each identified boundary gate is a replacement gate for
applying the blur. The gate type of a newly introduced gate is
referred to as the replacement type. After these selections, we
create a subcircuit similar to a multilevel blur. At first, the sub-
circuit contains only the replacement gate and its inputs. The
signature of the gate is recorded. Next, we add a new gate di-
rectly to the output of the replacement gate which is randomly
chosen from the set{AND,NAND,OR,NOR,XOR,XNOR}.
This adds an input to the subcircuit and we now record the
new signature. As before, we determine which terms require
recovery and perform a Quine-McCluskey reduction enabling
the recovery of the original subcircuit signature. The final step
is making a random connection between the new input and any
other gate output occurring closer to the circuit input.

Table II shows the truth table for the functionF0 = A+B.
This is a two input circuit containing a single OR gate. When
we add a gate with replacement type AND to its output, we
create a new functionF1 = (A + B)C. FromF0 you can see
we must recover terms two through seven. Performing Quine-
McCluskey reduction on these terms produces a minimized
sum of products functionBC ′F ′1 +BCF1 +AC ′F ′1 +ACF1.
In this equation the variableC reduces out indicating the input
C does not effect the output signature.

IV. H IDING EFFECTIVENESS

We measure hiding effectiveness by performing identified
boundary blurring using both multilevel and don’t care blur-
ring techniques. After the application of blurring, component
identification is performed again on the new circuit. The work-
station used during our research contains two 2.8Ghz Dual
Core Xeons with 4GB of DDR2 memory running Windows
XP Pro. The CPU time required to search components in
our unprotected circuit is 8736.051 seconds and the protected
circuit requires 36357.232 seconds to search. The component
size search range for both circuit is a range of 11 to 50 gates.
Our goal is zero components identified.

TABLE II
SIGNALS OF A TWO INPUT CIRCUIT WITH DON’ T CARE BLURRING

APPLIED. F0 IS THE ORIGINAL SIGNAL AND F1 IS THE SIGNAL AFTER THE

ADDITION OF THE ADDITIONAL CIRCUIT GATE .

A B C F0 F1

0 0 0 0 0
0 0 1 0 0
0 1 0 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 1
1 1 0 1 0
1 1 1 1 1

A. Results of Applied Blurring

Multilevel blurring has no effect on the 16-bit multiplier
when applied to identified boundary gates. No changes occur
due to circuit topology and our blurring implementation. When
we take the approach of applying multilevel blurring to gates
with maximum fan out 100% hiding is achieved. Applying
multilevel blurring to boundaries of the 33-15-555 circuit
results in 91.6% hiding. When we apply multilevel blurring to
our custom circuit, the tool identifies the caseI component.

Fig. 5. Structure of 16-bit multiplier before and after boundary blurring. The
smaller original circuit is shown above the modified circuit.

Applying don’t care blurring to identified boundaries in the
16-bit multiplier results in 100% component hiding. With this
blurring method, we do not have to use the maximum fan
out approach to achieve 100% hiding. The blurring process
increases the circuit gate size by 188% to a total of 7052 gates.
Figure 5 shows a before and after view of the multiplier’s
circuit structure. The upper unprotected circuit clearly shows
traceable repeated connections of full adders and half adders,
where the protected lower circuit is fully randomized with
no detectable full adder and half adder components. 100%



TABLE III
SUMMARY OF COMPONENTS IDENTIFIED USING EACH BLURRING

TECHNIQUE.

Circuit Multilevel Don’t Care
16-bit Multiplier 0 0
33-15-555 1 0

component hiding also occurs in our custom circuit when
using the don’t care technique. In this circuit variant, all
components including the caseI are no longer identifiable
by the identification tool. Table III summarizes the number
of component identified after application of each blurring
technique.

B. FPGA Design Considerations

Table IV shows the circuit performance and implementation
requirements of the 16-bit multiplier on Xilinx Virtex II Pro
FPGA (XC2VP30) which has 30,816 4-bit look up tables
(LUTs) for implementing gates or specific components [10].
The original unprotected 16-bit multiplier occupies 1.3% of
the available area and operates at 25Mhz. The obfuscated
circuit requires 3.6% of area, and operates at 13Mhz due to
the increase in gate quantity and levels. These results are
provided as a reference to expected overhead if proposed
protection methods are applied without optimization. However,
it is essential that the protected circuit’s primary purpose is in
providing a measure of component protection. The proposed
method can be applied to only critical portions of a circuit to
minimize the overall performance and implementation over-
head for the entire circuit.

TABLE IV
PERFORMANCE AND IMPLEMENTATION REQUIREMENTS FOR16-BIT

MULTIPLIER .

Unprotected Circuit Protected Circuit
Gates 2448 7052
Number of Slices 174 490
Number of LUTs 348 980
% Area Used 1.27% 3.58%
Operating Frequency 25MHz 13MHz
Clock Period 40ns 77ns
Number of Levels 123 238

V. CONCLUSION

Component identification is an essential element of circuit
reverse engineering. We have shown component identification
in logic circuits modeled as DAGs is possible using computer
tools. Defeating component identification is also possible using
our blurring techniques. Multilevel blurring is not as effective
in hiding component when the circuit being protected contains
components whose boundaries are shared with the circuit
boundary. In this situation don’t care blurring has the greatest
effect. Our experiments applied only one blurring technique
to a circuit. Therefore, additional work applying both these
methods to a circuit or randomly applying these methods may
improve hiding effectiveness.

ACKNOWLEDGMENT

This work was supported by a research grant from the
Air Force Office of Scientific Research. The authors would
like to thank Dr. Travis Doom at Wright State University
for sharing references and discussing his work on component
identification with us.

DISCLAIMER

The views expressed in this article are those of the authors
and do not reflect the official policy or position of the United
States Air Force, Department of Defense, or the United States
Government.

REFERENCES

[1] Unmanned Systems, vol. 28, Feb 2010.
[2] Office of the Under Secretary of Defense (Comptroller), “Fy

2009 budget request,” World Wide Web, 2008. [Online]. Available:
http://comptroller.defense.gov/defbudget/fy2009/2009Budget Rollout
Release.pdf

[3] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85
benchmarks: a case study in reverse engineering,”IEEE Design and
Test of Computers, vol. 16, no. 3, pp. 72 – 80, 1999, carry look
ahead;Error correcting circuits;Register transfer;. [Online]. Available:
http://dx.doi.org/10.1109/54.785838

[4] K. Nohl, D. Evans, S. Starbug, and H. Plötz, “Reverse-engineering a
cryptographic rfid tag,” inSS’08: Proceedings of the 17th conference
on Security symposium. Berkeley, CA, USA: USENIX Association,
2008, pp. 185–193.

[5] Chipworks, “Chipworks inside technology,” World Wide Web, 2010.
[Online]. Available: http://www.chipworks.com/whatwe do.aspx

[6] IEEE, “Ieee std 1076-1993 ieee standard vhdl language reference
manual -description,” World Wide Web. [Online]. Available:
http://standards.ieee.org/reading/ieee/stdpublic/description/dasc/1076-
1993 desc.html

[7] J. L. White, “Candidate subcircuit enumeration for module identification
in digital circuits,” Ph.D. dissertation, Department of Computer Science
and Engineering, Michigan State University, 2000.

[8] J. L. White, A. S. Wojcik, M.-J. Chung, and T. E. Doom, “Candidate sub-
circuits for functional module identification in logic circuits,” Chicago,
IL, USA, 2000, pp. 34 – 38, functional module identification;.

[9] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Iscas-85
c6288 16x16 multiplier,” World Wide Web, available at
http://www.eecs.umich.edu/ jhayes/iscas/c6288.html.

[10] XILINX, “Virtex-ii pro platform fpgas: Complete
data sheet,” World Wide Web. [Online]. Avail-
able: http://www.digchip.com/datasheets/parts/datasheet/534/XC2VP30-
5FF896I-pdf.php


