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Abstract

One approach to protect distributed systems implemented
with mobile code is through program obfuscation. Dis-
guising program intent is a form of information hiding
that facilitates tamper proofing. By hiding program in-
tent, adversaries are reduced to non-semantics attacks
such as blind disruption or operating system level attacks
(e.g. buffer overflows).

In this paper, we amplify the Barak result to observe
that the Virtual Black Box (VBB) program obfuscation
model is fundamentally flawed for useful analysis. We pro-
vide an alternative framework for establishing and evalu-
ating program intent protection mechanisms to impede
software tampering. Our model reflects more modest
goals than VBB. Rather than considering a comprehen-
sive obfuscation view, we detail broad threat classes and
propose mechanisms to counter those threats. We then
illustrate our model with a protection proof and outline
extensions to our results.

Keywords: Mobile agent security, tamper proof software,
program encryption, obfuscation, software protection

1 Introduction

Protecting programs from illegitimate use is a classic
problem in computer science. To date, there is no com-
prehensive approach to control distributed software use.
Registration, water marking, and copy protection have
each achieved some success in preventing and detecting
software tampering. We focus on program obfuscation
and the stronger concept of program encryption as they
can be used to control unauthorized or unintended soft-
ware use and itemize our primary contributions as:

*The views expressed in this article are those of the author and
do not reflect the official policy or position of the United States Air
Force, Department of Defense, or the U.S. Government.

e Point out limitations in the current standard obfus-
cation model for defining intent protection while still
acknowledging large classes of unobfuscatable pro-
grams exist

o Offer a new obfuscation model with the more modest
objectives of characterizing threats and the mecha-
nisms for countering those threats

e Exercise the new obfuscation model by proposing a
mechanism and proving its security properties

e Introduce the notion of random programs and how it
can protect against tampering

e Introduce the field of program encryption

The goal of program obfuscation is to disguise pro-
grams so that a user can execute them but cannot deter-
mine their intent; essentially, it entails constructing pro-
grams so that they are unrecognizable in some sense [9].
The goal is that if an adversary does not know what the
program is trying to do (in some sense), it does no good
to copy it, nor can an adversary change the program in
any meaningful way.

Consider a military application where the enemy may
capture a hand held device. If an adversary captures the
device with a session open, the enemy can observe some
number of input and output relationships. If the program
is protected against black box analysis, the enemy cannot
determine the function of the device from an arbitrary
number of input-output pairs. However, a sophisticated
adversary may be able to analyze the device from a white
box perspective; that is, they can watch the execution
of arbitrary input and analyze the control flow and data
manipulations as they occur.

Programs that are protected from white box analysis
prevent the enemy from learning the program’s intent by
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watching its execution. Program intent protection sup-
ports many other security capabilities, including tamper
resistance, data protection, even the opportunity to lever-
age symmetric encryption techniques for pubic key func-
tions.

One of the primary driving applications for obfuscation
is to protect mobile code execution protection and to pro-
vide tamper protection in [mobile and non-mobile] agent
applications. Mobile agent applications have motivated
much of the research in code protection overall and our
work specifically.

1.1 Tamper-Resistant Software

Tamper-resistant! software is a classic problem in com-
puter science [1, 18, 19], both as a matter of security and
of digital rights management. It is difficult to protect pro-
gram execution, manipulation, and copying in an environ-
ment that a sophisticated adversary controls. Normally
simple security functions, like protecting an encryption
key, are complicated in a hostile execution environment.
The adversary’s ability to copy the code to attack in par-
allel combined with the canonical benchmark of guaran-
teeing security in the worst case paints a bleak picture.

Still, mobile code is an important approach to dis-
tributed computing. Sending the execution environment
to the data rather than the reverse, can have positive
properties, including, but not limited to: (1) reduce net-
work latency (2) encapsulate protocols, (3) execute asyn-
chronously, (4) adapt dynamically, (5) leverage hetero-
geneity. Additionally, code migration allows process au-
tonomy that mirrors and leverages the highly dynamic ex-
ecution environment that is characteristic of current and
future networks. Similarly, in mobile computing environ-
ments, sophisticated intruders may acquire (or capture)
for rigorous offline analysis.

We propose to protect against program tampering by
hiding their intent; essentially preventing intruders from
understanding mobile code in some sense. The implica-
tion is that if malicious parties do not know what the
program is trying to do, they cannot perpetrate attacks
that achieve a predictable result. Thus, their interference
is limited to blind intrusion, or at least to a subset of
well-known, non-application specific attacks (e.g. buffer
overflow attacks that have no semantic application rela-
tionship).

There is significant program obfuscation research docu-
mented in the literature [9, 10, 16, 17, 33]. Some research
focuses on a narrow application domain [13, 15, 28], while
other results consider very broad application [35]. We pro-
pose a protection approach that evolved from obfuscation
research, called program encryption. Possibly the major
contribution of this paper is our framework for measur-
ing and categorizing program obfuscation and encryption

1We do not claim [or seek] tamper proof programs. A contribu-
tion of our paper is to recognize that there are many programs that
cannot be obfuscated, though our mechanisms can inhibit a large
class of tampering attacks.

techniques. This framework allows us to precisely discuss
whether or not a given program is recognizable.

1.2 The Threat Model

The Virtual Black Box (VBB) paradigm is a classic ap-
proach to analyzing program obfuscation. The notion is
that to be effective, obfuscation must prevent information
from leaking through the source code. In provable secu-
rity lingo, this (loosely) means that an adversary should
not be able to prove anything when in possession of the
obfuscated code that they could not prove with only ac-
cess to an oracle for the original program. Unfortunately,
the VBB model is fundamentally flawed.

First, VBB does not capture the notion of black box
analysis to determine program intent [16]. If a sophisti-
cated adversary can use input-output pairs acquired from
the oracle to equate the obfuscated program to some
known program, the VBB premises are met, but the con-
clusion is not achieved. Clearly, if an adversary can deter-
mine program intent by observing and arbitrary number
of input-output pairs, the program is not obfuscated in
any meaningful sense.

Additionally, the operational characteristics (size, per-
formance, etc.) of an obfuscated program always give
away hints about the original program. For example,
simply by looking at program size, an adversary can de-
termine if the program can be intended for constrained
computing environment implementation. Beyond this,
operational characteristics may convey program seman-
tics. Events such as execution timing or event sequencing,
as demonstrated through the canonical covert channel of
disk head movement reflecting data encoding [30] reflect
embedded functional intent that VBB does not capture.
We do not contend that VBB is useless in analyzing ob-
fuscation, only that it is limited in what it captures, and
thus, other models are necessary to demonstrate effective
hiding of program properties for security.

The VBB flaws result from the breadth the approach
seeks, essentially to be a comprehensive model for pro-
gram obfuscation. Our goal is comparatively modest. As
a first step toward a new model, we reduce the objective
from general obfuscation to protecting program intent,
under a more narrow definition and against specific at-
tacks. For our purposes, we consider intent protection a
game between an originator and an adversary or intruder
(we use these terms interchangeably). We consider that
intruders only desire to recognize programs for three pur-
poses:

1) To manipulate the code in order to attain a known
output effect

2) To manipulate input to attain a known output effect

3) To understand the input/output correlation for use
with contextual information

We illustrate the first two of these by considering an
Internet purchase application where a mobile agent gath-
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ers bids for a product or service. If the adversary residing
on a visited host recognizes the program, they may ma-
nipulate the response to the agent or they may locally
modify the agent code in order to falsely elevate their op-
portunity to win the bid. Intent hiding does not prevent
an intruder from changing input or code, but reduces this
type of tampering to blind disruption by preventing the
intruder from being able to predict the effect of an input
or code change.

The third objective considers an adversarial environ-
ment where parties gather information or intelligence,
about one another. Here we anticipate that the adversary
may gain important information, not about the specific
transaction, but about the underlying business practice
or strategy that the agent executes. If an adversary is
able to understand the program’s intent, they may infer
fundamental business information from the transaction.
Conversely, if we protect program intent, an intruder is
unable to gather information about the dispatcher’s ac-
tivity.

The rest of this paper is organized as follows. In the
next section, we define program recognizability and illus-
trate the concept in three separate formalisms. In Section
3 we discuss program encryption and lay out the aspects
and techniques that are important to our approach. We
end the paper with a summary and conclusions.

2 Understanding Programs

Software engineering experts pride themselves in being
able to produce programs whose purpose is clear from
the software artifacts alone (source code and documenta-
tion). There is substantial value in understanding what a
program is supposed to do for maintenance purposes and
producing understandable programs has been a software
engineering research goal for more than forty years. Pro-
gram understanding [3] has also been an area of research
to analyze or capture mental processes associated with
code learning (for the purpose of re-writing or modifying
efficiently).

While our work is motivated by using program pre-
diction for malicious purposes and obfuscation for secu-
rity, the notion of program clarity for maintenance di-
rectly applies. A maintenance programmer must be able
to understand program intent in order to make purpose-
ful changes, e.g. to fix bugs, improve performance, port
to a different environment, etc. In the same sense, a ma-
licious host must understand what a program is doing (in
some sense) to effectively copy, modify, run, or forward
the program to accomplish a semantics-oriented purpose.

Side effects are an example of an unintended outcome
of a program, segment, or construct, or at least an out-
come that is not clearly intended. Some programmers
consider their code elegant because of their stylistic use
of obscure approaches to accomplish intended function in
ways that are not obvious. When programs with obscure
mechanisms are changed, the maintenance programmer is

unlikely to recognize the all impacts of the change. This is
good news for security researchers that utilize obfuscation
to protect programs since it suggests that understanding
programs precisely is a naturally hard problem.

On the other hand, research has produced mixed re-
sults on this question. For example, we know that certain
control structures are provably difficult to analyze [25].
Conversely, other investigation tells us that obfuscation
is impossible in the general contexts [2, 12]. Considerable
work has been done to show that obfuscation is possible
for point functions (functions that output 1 for only a
specific input value and output 0 otherwise) in different
security models [5, 6, 21, 34].

The primary impossibility result of [2] formally demon-
strates VBB limitations by contriving a family of pro-
grams that cannot be VBB obfuscated, illustrating that
general, efficient, provably secure, VBB obfuscators do
not exist. Other researchers such as [13] are currently
moving towards other models or definitions of obfusca-
tion to allow greater freedom for useful results. In this
vein, we put forth a model which allows us to leverage
other program intent protection properties that avoid the
major limitations of the impossibility results. For exam-
ple, attackers may not require precision; i.e. they may
only need a high level understanding or recognition of a
functionality subset in order to accomplish their intended
malice. Once again, there is little in the literature that
quantifies the understanding necessary to maintain, or at-
tack, a program. Before we give such formalizations, we
first offer our intuition.

The foundation for our approach is that an adversary
only understands a program if they are able to predict
its operation in one of two ways. First, an adversary
that understands a program can predict a program’s out-
put with any given input. For example, for the program
that computes the simple function given in Equation (1),
an adversary given a small number of input-output pairs
need not run the program to strongly suspect that its out-
put is 7 on input 2. As a more complex example, consider
a program P that implements a small degree polynomial.
Even if an adversary is unable to expose P itself, but can
plot a graph based on gathered input-output pairs, they
may be able to guess output for a given, arbitrary input
without running P.

y:=x+5 (1)

The second program understanding notion is that an
adversary that understands a program can reason about
the input required to produce a desired semantic result.
For the program P that implements Equation (1), an ad-
versary that understands P and desires that P produce an
output of, say 19, knows to feed 14 into the program. This
”one-way” property captures an important intent quality.
A common threat to mobile code is that the adver-
sary desires the query to produce a favorable result from
their perspective. Accordingly, their goal is to modify
the input or code to produce a result with these prop-
erties. With intent-protected mobile code, the adversary
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can only guess the input to produce the desired result
with low probability.

We earlier illustrated, adversaries may use intuition
and graphing to try to understand a program’s intent,
but there are many other ways. For example, an adver-
sary may be able to guess the output of P by determin-
ing that P is equivalent to another program?, P; that the
adversary recognizes (i.e. understands its intent). Es-
sentially, the adversary could run P; as their ”prediction
process” as long as they are confident that for any relevant
input z, P(x) = P;(z).

We now formalize our definition of program under-
standing as an entity’s ability to derive the input corre-
sponding to an arbitrary output based on their program
understanding. While we speak in terms of functional re-
sponse, we recognize the broader notion of any persistent
state change or information transfer to another process or
device as output?.

Definition 1. Given polynomial-time Turing Machines
(TM) B and P and given B has access to the following
nput:

1) an arbitrarily large set of 1/0 pairs from P
2) access to P’s code for static analysis
3) access to P’s code for dynamic analysis

4)
5) arbitrary output y € Y,

a combination of (1), (2), and (3)

B understands P: X — Y if and only if

Pr[B(y) = z|P(z) = y,z € X| > | X|™! +¢,

where € is a small constant. If no such B exists, we say
that P is intent protected.

2.1 Programs and Context

A major challenge to protecting a program’s intent is the
role that contextual information plays. In most mobile
applications, it is impossible to protect all contextual in-
formation from the executing host. Items such as program
size, execution time, controlled input performance and
resource use variations, response to injected errors, and
many other operational program aspects are under the
executor’s control. Application-domain analysis in fact
aids in non-malicious reverse engineering efforts rather
well [4, 8]. It is a prerequisite for protecting a program’s
intent that the adversary has limited contextual infor-
mation available. Thus, there are many programs that
inherently cannot be obfuscated.

Consider a program that comes from a vendor known
to provide travel plans, and the target host contains only
flight information and pricing for a known airline with

2We consider issues of program equivalence in a later section.
3Obviously, programs that do not have output in this sense are
not necessarily suitable to our obfuscation approach.

limited availability dates (e.g. last minute flights). In
this case, even a casual observer may infer that the pro-
gram is gathering flight information to prepare imminent
travel plans for the dispatcher’s client. Thus, available
contextual information and intent protection opportunity
are inversely proportional.

A main contribution of our work is that we limit the
program obfuscation model’s goal by recognizing that
there are programs that cannot be obfuscated. In ad-
dition, there are programs that can be obfuscated, but
our approach is not appropriate to obfuscate them. We
do not claim that intent protected programs cannot be at-
tacked; only that they are secure against semantic-specific
attacks. For example, many current attacks leverage stan-
dard code patterns and known interactions between appli-
cations and operating systems. Our mechanisms are not
intended to prevent such exploits, though they offer some
protection against common cookie-cutter attacks. Addi-
tionally, we do not claim to protect against input data
manipulation or denial of service attacks except that we
prevent such attacks that target program intent, e.g. an
executor can filter the input fed into the obfuscated code,
but they cannot predict the impact on the program out-
put.

There are three primary approaches to context-
independent program intent detection: (1) Input-output
(black box) analysis (2) Static analysis (3) Dynamic or
Run-time analysis. The later two collectively define white
box analysis. Program Recognizability (PR) is a classic
concept in computer science and is related to the pro-
gram understandability notion. Classic PR refers to the
context-free notion of being able to determine whether or
not a string is a member of a particular language. This
is a form of static analysis. Compiler optimization tech-
niques refine the recognizable language classes, allowing
program segment identification through signature analy-
sis. Combined with reverse engineering techniques, com-
piler optimization techniques complicate hiding program
intent.

Program intent may become evident through repeated
execution and input-output pair analysis, so programs
that hide their intent must protect against black box anal-
ysis. In preliminary results, we propose general mecha-
nisms to accomplish black box protection [36], propose
a white box protection technique based on circuit ran-
domization [23], and demonstrate an end-to-end perfectly
secure protection algorithm in limited program contexts
[22]. We formalize these notions in this work and extend
them to include combinations of both black and white
box protection. Malicious parties that acquire code or
can corrupt hardware may be able to examine executing
code with automated tools such as debuggers. We propose
approaches to prevent run-time, dynamic analysis based
on the concept, extended from obfuscation research, of
program encryption. Finally, we recognize that malicious
parties are likely to attack intention protection using hy-
brid methods of combinations of static analysis, black box
testing, and dynamic analysis. We also propose mecha-
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nisms to protect against these hybrid attacks.

2.2 Understandable Programs

We consider Program Understandability (PU) to be
Boolean. That is, given an arbitrary program p, there
may be a function understand(p) that returns either true
or false. Of course it is possible that PU() is Boolean,
yet that no program exists that distinguishes between pro-
grams that are understandable and those that are not. It
is also possible that the Boolean viewpoint is too narrow,
for example there may be programs that have no notion of
understandability, i.e. programs that have NO overriding
intention* or pattern (possibly created with that in mind
to confound potential intruders®).

If PU() is Boolean, we can use this to reason about
what it means to understand a program. Consider the set
of all programs, P. We can partition P into two subsets,
the set of all understandable programs (R) and the set of
all non-understandable programs (U), where P = RUU.
We observe that many functions are fundamentally un-
derstandable, so cannot be obfuscated. For example, any
program that implements the function y = 22 is black
box recognizable. No matter how random the code im-
plementing this function may be, an adversary need not
look at the code to know what the program is doing. It
need only conduct black box analysis. The essence of
numerous impossibility results for obfuscation [2, 11, 12]
all support this thesis as an inherent weakness of general
program protection.

Since P is infinite, either R, U, or both are infinite.
It is also reasonable to ask if either R or U is empty. In
the former, we may argue that ALL programs have unin-
tended impacts at some level of abstraction, or even that
our ability to articulate intentions precludes any program
from comprehensively meeting them. In the latter, we
may point to the Barak result [2] as sufficient to argue
that U is empty. We know that simple polynomials are
not good candidates for intent protection, but what about
strong encryption functions, since we know that these are
not susceptible to black box analysis? However, all well-
known encryption algorithms have well understood pro-
gram structures that can be recognized by a sophisticated
white box intruder. We offer additional insights on this
later.

We have a strong intuition regarding what it means to
understand a program from Definition 1. However, we
have not formalized what it means for a program to be
understandable. A program is non-understandable (obfus-
cated) only if it leaks no intention-relative information, for
example, if it is indistinguishable from a random program.
We argue that this notion is sufficiently strong to preclude
intentioned attacks, though we recognize that weaker for-
malizations may prevent some (or even most) intentioned

4Random programs or programs that have no impact on the
environment.

5We presently ignore the self contradiction of having programs
whose purpose is to have no purpose.

attacks. Thus, a conservative program encryption goal
is to generate executably-encrypted code that is indistin-
guishable from random programs, which we define in the
next section.

2.3 Random Programs

When we refer to random data, we envision data (e.g.
bit streams) produced from a well defined population via
unbiased selection. The following properties loosely char-
acterize random bit streams:

e No discernible patterns
e Each bit is equally likely to be zero as one

e Any reasonable length sub-string has about the same
number of 0s and 1s

We now suggest several similar "random program”
properties. Since programs can be digitized, we could
utilize the same characterization as is applied to random
data; i.e. that there are no discernable bit patterns, each
bit is equally likely to be zero or one, and any sub-string
of reasonable length has about the same number of zero’s
as it has ones. If we do not intend to execute random pro-
grams, this characterization works fine; in fact, programs
are routinely [data] encrypted for transmission or storage,
but these encrypted programs must be decrypted before
execution.

It is less obvious whether or not we can retain the
random bit stream characterization if we intend for the
encrypted program itself to execute. Computers require
structure in machine instructions and this structure may
inject discernable patterns into programs. Instruction
structure is analogous to lexical representation in textual
data. We can overcome this limitation if we assume an ab-
stract machine with architecture such that the instruction
space is saturated. This means that if instructions are n
bits long, the instruction set has 2" valid instructions and
that every (random or other) bit stream of length = x n
bits contains x valid instructions. We may think of the
instruction length as analogous to block length of data
encryption. Unfortunately, here is where the analogy to
data encryption diverges.

In data encryption, cipher text has no operational ex-
pectation. Its value is exclusively in its randomness and
only decryption reveals the potential information that
it possesses. Conversely, encrypted programs carry out
their purpose through execution. Thus, we should ex-
tend the notion of program randomness to include its dy-
namic, runtime behavior. Clearly, executably-encrypted
code constructed via random bit generation must ensure
that instructions are not related; though [it appears] such
programs offer no intentional opportunity.

We can also think of a random program as having
the code equally distributed over the instruction space.
We could generate a random program by randomly se-
lecting the operator from all possible operators and sim-
ilarly selecting the operands. Programs generated in this
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way would have random properties such as having sim-
ilar count of each instruction type, no patterns among
operands, and no observable patterns between instruc-
tions. Again, it is difficult to envision how such a program
could execute successfully, let alone accomplish meaning-
ful intent.

Finally, we could think of a random program as a com-
position of higher level structures, composed with no dis-
cernable pattern or plan. We may construct such a ran-
dom program by randomly selecting subroutines from a
large subroutine library built for this purpose. These pro-
grams would display yet different random properties from
the first two approaches.

The consistent theme is that while there may be sev-
eral ways to think about how to select random programs,
each type of selection process has discernable randomness
properties, analogous to random bit streams. The more
we know about random program properties, the more
likely we will be able to generate intentioned programs
that reflect random program properties. This is our goal.

2.4 Approaches to Understanding Pro-
grams

Only imagination and resources limit the number of meth-
ods that a motivated and sophisticated adversary can em-
ploy to reveal a program’s protected intent. Nonetheless,
the literature reveals black box and white box analysis
as the classical approaches for defeating program obfus-
cation. Without loss of generality, we address these at-
tacks as if they are accomplished off line, where the ad-
versary has copied the software to a computer with large,
but polynomially bounded resources. In practice, the ad-
versary may only be able to employ on line attacks. In
any case, off line attacks reflect the stronger adversarial
model.

Input-output mappings naturally encapsulate program
functionality. Thus, a natural way to try to identify a
program’s intent is to analyze known input/output pair-
ings. This approach is widely known as Black Box Anal-
ysis since this technique treats the program as an oracle
(black box) without any insight into its internal work-
ings. While an adversary may capture some I/O pairings
during normal system operation, the adversary’s ability
to execute an intent-protected program off line to gener-
ate an arbitrarily large set of I/O pairings is the greater
concern.

Definition 2. Any TM P: X — Y is black box
understandable if and only if there exists TM B such
that given an arbitrarily large set of input-output pairs
from P and arbitrary output y € Y,

Pr[B(y) = o|P(z) = y,x € X] > |X|™" +e,

where € is a small constant. If no such B exists, we say
that P is black box intent protected.

While black box obfuscation can be helpful in itself,
if an adversary can attain the source code of an intent-

sensitive program via theft, reverse engineering, etc., they
can subject the program to off line scrutiny and auto-
mated analysis. These code-based mechanisms look into
the clear [or white] box and study program construction
and instruction characteristics. The two primary types of
white box investigation are static and dynamic analysis.

Static analysis involves actions that an adversary takes
without executing the code. Static approaches include
inspection, parsing, optimization, pattern matching, etc.
These actions can give the adversary hints about the na-
ture of the data, control structures, resources used by the
program, etc. Dynamic analysis occurs as the program ex-
ecutes. Run-time tools such as debuggers reveal control
flow, data manipulations and evolution, and resource ac-
cess and consumption. If either static or dynamic analysis
or the two applied collaboratively can reveal a program’s
intent, the program is white box understandable.

Definition 3. Any TM P: X — Y is static analysis
understandable if and only if there exists TM B such
that given access to P’s code for static analysis and
arbitrary output y € Y,

Pr[B(y) =z € X|P(z) =y] > |X| ' +e

where € is a small constant. If no such B exists, we say
that P is static analysis intent protected.

The third program intent investigative paradigm is dy-
namic analysis, where the adversary executes the program
to observe control flow, variable manipulation, state tran-
sition, call sequences, and any other operational program
characteristics.

Definition 4. Any TM P: X — Y is dynamic
analysis understandable if and only if there exists
TM B such that given access to P’s code for dynamic
analysis and arbitrary output y € Y,

Pr[B(y) = z|P(z) = y,z € X| > |X|_1 + €,

where € is a small constant. If no such B exists, we say
that P is dynamic analysis intent protected.

Black box, static, and dynamic analysis are separate,
related techniques. While they reveal many of the same
program properties, they are sufficiently distinct and com-
plementary that their combined application can produce
increased effectiveness over their individual operation.

2.5 Related Concepts
2.5.1 Reverse Engineering

We often associate reverse engineering [see Figure 1] with
white box analysis for defeating program obfuscation.
Reverse engineering produces an abstraction (high level
code) from an implementation (low level code) whose goal
is to illuminate retain the original code’s functionality
while also revealing its intent [14]. Our notion of black
box/white box understanding is similar to ongoing work
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Figure 1: Generic Reverse Engineering Process

[20, 32] aimed at program protection from dynamic or
static analysis techniques. Program encryption hides al-
gorithmic knowledge without necessarily verifying correct
execution or providing data privacy. By breaking the link
between how a program functions and its input/output
behavior, reverse engineering cannot divulge program in-
tent. Disassembly and decompilation techniques are tools
that manipulate code into human-readable form that may
reveal program intent.

2.5.2 Program Equivalence

One way to describe PU() is as a function of whether or
not an adversary can determine if a program g implements
functionality A that the adversary is aware of and under-
stands. Thus, if we ”understand” functionality A and can
show that ¢ € P4 (where P4 is the set of all programs
that implement A) then we can say that we understand
program g. One way to show that ¢ implements A is to
find or derive a program p, that is known to implement
A, then determine if ¢ is equivalent to p,. By definition,
if ¢ is equivalent to pa P4, then ¢ is also an element of
Py.

There is significant research foundation in establishing
program equivalence [24, 31]. Much of this work addresses
issues of subtle differences in the notion of equivalence.
Syntactic equivalence is the strongest form of program
equivalence. Two programs that are syntactically identi-
cal satisfy all program equivalence notions.

Operational equivalence [26] occurs when two pro-
grams can replace one another in any execution environ-
ment without negatively impacting the operation. This is
a broad form of equivalence that takes into consideration
performance, code size, storage efficiency, communication
requirements, etc. Finally, two programs are semantically
equivalent if they have the same domain and range® and
if the input/output is identical, i.e. p1(a) == p2(a) for all
a in the domain of p; and p;. We recognize the weakest

6We borrow the terms domain and range to reflect the possible
input and output sets of programs throughout.

equivalence (semantic) as the baseline definition in our
model.

2.5.3 Perfectly Secure Code

Traditional data ciphers are often compared to the
strength of the one-time pad—a cipher that reflects per-
fect secrecy defined by Shannon [29]. Perfect secrecy is
achieved when the probability of deriving a plaintext (P)
given its enciphered version (C') is the same as deriving
the plaintext without any ciphertext to observe. In other
words, the ciphertext contains no relevant information
that helps in finding the plaintext: Pr(P|C) = Pr(P).
When a data cipher is perfectly secure, the probability of
deriving the plaintext given the ciphertext becomes the
probability of the finding the key itself.

In terms of program ciphers, entropy is a prospective
measuring tool. Cartrysse and van der Lubbe [7] define
mobile code privacy based on perfect secrecy using the
similar notation: H(p|p',y’) = H(p). In entropy terms
this definition states that the information of a program
p, given its encrypted version p’ and the output y’(from
execution of p’) is equivalent to the information of pro-
gram p itself. This is a restatement of Shannon’s notion
that the ciphertext (in our case, the encrypted program
p’ and its output y’) provides no additional information
about the plaintext (the unencrypted version of p).

Cartrysse and van der Lubbe [7] describe a one-time
pad for polynomials (OTTP) that is perfectly secure, but
with the stipulation it can only be applied when the set
of mobile code is composed of polynomials. Their frame-
work has limits in that the host does not have access to
the encrypted output gy’ for decryption. However, the
scheme maintains the notion of an encrypted version p’ of
the program p by some key K. We develop a framework
to reason about program encryption and provide practi-
cal implementation techniques for general programs, dis-
cussed next.

3 Program Encryption

The notion of data encryption evolved from methods to
disguise written or spoken information so that the syntax
does not give away the semantics of the message. Early
disguises, such as the Caesar Cipher, were simple but ef-
fective for their purposes. It took many years for such
obfuscation processes to mature into data encryption as
we know it today.

Attempts to protect program intentions (semantics)
began with modest mechanisms to obfuscate code, e.g., by
writing spaghetti code, disguising variable names, casting
variables, padding code, etc. Rigorous methods utilizing
mathematical approaches emerged more recently. In this
section, we propose a model and a mechanism for program
intent protection.
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Figure 2: Obfuscation with Recovery Model

3.1 The Model

Thus far we have discussed characteristics of programs as
mappings from a pre-image to its image. Traditionally,
obfuscation has considered producing different versions
of the same program, where one version is (or likely is)
understandable, but the obfuscated version of the same
program is not understandable. As we noted earlier, ob-
fuscation in this form was shown to be impossible in the
general case [2], offering a bleak outlook for obfuscation-
seeking investigators.

A slightly different model renews the hopes of the ob-
fuscation research community. This adjustment allows
the investigator to obfuscate a program (say p) by gener-
ating a NEW program (p’) and a recovery program (r)
with the properties that p(xz) = r(p'(x)) and where r
is simple to compute. The fundamental property of the
model, shown in Figure 2, is that the output of the ci-
pher code (p’) is not equivalent to the output of the orig-
inal program (p), a property illustrated by Sander and
Tschudin [28] and others. This complicates the task of
an adversary seeking to reveal the intent of p because dis-
covery of the intent of p’ may not reveal the intent of p
and there may only be a small percentage of p’s intent
incorporated into p’ by the originator.

The obfuscation process is shown in Figure 2 with a key
that may provide security control over the process. Inclu-
sion of the key is a subtle but essential element because
it allows us to more nearly mirror the data encryption
paradigm. To be cryptographically strong, the method
must be public and its strength dependent only on knowl-
edge of the [secret] key.

Our first goal is to produce a transformation process ¢
that generates an unrecognizable program p’. Of course p’
must have the functionality reflected in Figure 2 and the
transformation process must also produce r with the req-
uisite properties, but the first goal is that ¢ must generate
p’ that is provably difficult to understand. We introduce
one such process in Theorem 1.

3.2 Black Box Protection

We see from Figure 2 that in order to protect the intent
of p/, the obfuscator must protect p’ against black box

analysis. We accomplish this by creating p’ as the com-
position of the original program p and a strong encryp-
tion algorithm e so that for all z € X, p/(z) = e(p(x)).
Specifically, the transformation process from the original
program p is seen in Equation (2):

{ ey |

Cryptographically strong obfuscation results from the
nature of strong encryption algorithms. We illustrate this
through two the following two lemmas.

(2)

Lemma 1. Any cryptographically strong encryption
algorithm is black box intent protected.

Proof: Arbitrarily select the cryptographically strong en-
cryption algorithm E (i.e., E is a private-key encryption
scheme that satisfies indistinguishability under chosen
plaintext and nonadaptive chosen ciphertext attacks.)
and assume E is black box understandable. Then there
exists TM B such that Pr[B(y) = z | P(z) = y, © €
X] > |X|7! + €. This violates cryptographically strong
encryption. A

This says that given an arbitrary output, the input to
program E cannot be efficiently guessed. Of course, this
is an essential property of a strong encryption algorithm.
It is also a fundamental property of strong program en-
cryption algorithms.

Lemma 2. Any program that implements an encryption
algorithm with strong semantic security s black box
obfuscated.

Proof Sketch: Similar to Lemma 1. If an adver-
sary can efficiently guess the cipher text for one plaintext
message it can easily distinguish that cipher text from
the cipher text of another message. This contradicts the
encryption algorithm’s strong semantic security.

We now present a significant contribution of this paper.
We give and prove Theorem 1 based on the program intent
protection model, where security is guaranteed relative to
the specific threat, in this case that threat is black box
analysis.

Theorem 1. Let t(p,e, k) = (p/,r) be a process that
creates program p’ by composing a program p and a black
box obfuscated encryption program e. Then p’' is black
boz obfuscated.

Proof: Follows directly from Lemma 1. If e is
black box obfuscated, then p' is also black box obfuscated
since the output of p’ is [also] the output of e.

We emphasize that this proof provides the foundation
for any further obfuscation. Programs that can be inter-
preted through black box analysis are not obfuscated. Re-
call that this is a primary weakness of the VBB paradigm.
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This proof effectively overcomes the VBB limitation en-
suring us that black box protection is not only possible,
but it is fairly easy to accomplish.

Furthermore, it gives us insight into why obfuscation is
meaningful. The notion of intentioned manipulation pre-
cisely captures an important intrusion category and limits
blind disruption to sophisticated intruders. Moreover, it
provides a foundation to expand our research into situa-
tions where adversaries are able to extract executing code
for out of band, white box, analysis.

3.3 White Box Protection

In our model, white box protection requires the origina-
tor to systematically confuse p’ so that an adversary can-
not learn anything about program intent by analyzing the
static code structure or by observing program execution.
The confusion must make the code and all possible execu-
tion paths that it produces display properties of random
programs. For example, if a sophisticated adversary can
distinguish between the functional program and the com-
posite encryption program, they may be able to extract
valuable intent information.

Asymmetric encryption matured slowly until re-
searchers realized a major advance by combining the two
well-known, but individually weak approaches of substi-
tution and transposition into the cryptographically strong
product cipher that remains the foundation technology of
strong asymmetric key cryptography today. We now out-
line several approaches that can synergistically lead to
secure, executably-encrypted code.

3.3.1 Multi-function Programs

By taking the composite of several independent programs,
the adversary is challenged not only to recognize many
different program intentions, but they may also need to
be able to discern which one reflects the originator’s the
actual intent. Researchers such as Collberg [9] have posed
similar mechanisms to introduce multi-functional confu-
sion into the reverse engineering process.

3.3.2 Code Interleaving

One of the factors that lower program understandabil-
ity is code that accomplishes more than one purpose in-
terwoven together. Researchers have demonstrated the
conceptual (not mathematical) hardness of understanding
interleaved or multi-functional code [27] and its effect on
reverse engineering capability. When programs are (only)
concatenated, their code segments are simple for a sophis-
ticated adversary to distinguish. By interleaving code in
a way that does not disturb the program’s functional-
ity but yet produces measure coalescing, the adversary’s
workload can be measurably increased.

3.3.3 Module Grouping/Interleaving

Common modules, such as "read”, provide natural group-
ings for deobfuscation analysts. Interleaving unrelated
code segments increases deobfuscation complexity.

3.3.4 Systematic Random Statement Insertion

Programs can be made to have random program proper-
ties by inserting execution neutral statements with proper
characteristics in random and pre-selected places. For ex-
ample, a program can be made to have the same count
of each of several instruction types by inserting no-op in-
structions of the deficient operator type.

3.3.5 Random Encryption Program Generation

Well known encryption programs have recognizable struc-
tures that are fertile targets for deobfuscators. Generat-
ing encryption programs based on a systematic approach
may provide suitable black box protection while limiting
pattern matching and/or control flow attack opportunity.

3.3.6 Randomized Code Blocks (RCB)

Programs can be created to operate in a virtual envi-
ronment of their own where the original code blocks are
randomized and stored. The program’s first runtime task
would be to re-order these code blocks in memory, based
on some key, before continuing execution. This technique
would greatly frustrate static analysis tools.

3.3.7 Morphing Code

An extension of RCB, self modifying code offers signifi-
cant challenges to runtime analysis. Control flow, variable
analysis, and other indicators are more difficult to corre-
late with intent when the program continually changes as
it executes.

3.4 Program Confusion and Diffusion

For modern, symmetric key data encryption, crypto-
graphic strength is accomplished through the synergy of
two complementary mechanisms: substitution and trans-
position. Applied alone, neither provides strong content
protection, but combined properly, they produce encryp-
tion algorithms that have withstood decades of rigor-
ous scrutiny and analysis. Many agree that this synergy
comes from the properties of confusion and diffusion that
the two approaches provide. Substitution provides rigor-
ous, systematic confusion. Transposition also provides
confusion, but provides the added feature of diffusion,
spreading each byte of confusion across the cipher text.
Program encryption similarly employs rewriting and
interleaving to provide program confusion and diffusion.
Rewriting is similar to S-box substitution in data ciphers.
Statements and segments are recursively evaluated for
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Figure 3: Program Encryption

rewriting opportunity and when encountered, they are re-
placed by a suitable, randomly selected, alternate state-
ment or segment. Conversely, statement/segment inter-
leaving and inversion corresponds to transposition. Suit-
able statements are randomly selected for interleaving,
thus creating different segments available for rewriting.
So rewriting and interleaving are performed alternatively
and the process recurs for either a fixed number of cycles
or until a suitable threshold is reached. Figure 3 illus-
trates this process.

3.4.1 Rewriting for Program Confusion

S-boxes are powerful mechanisms for implementing strong
cryptographic substitution. One lesson of cryptography is
that while S-boxes can provide effective confusion, their
construction plays a large part in the level of protection
they provide. Similarly, statement and segment rewriting
rules must be constructed carefully to ensure successful
program confusion.

Effective S-box construction is, essentially, guided by
randomness. Program randomness must also drive rewrit-
ing while also preserving the replaced code’s functional-
ity. One approach to meet both objectives is to develop
rewrite libraries that provide a large number of potential
replacements.

The first requirement of these replacement segments
is that they retain the replaced code functionality. They
may also employ ruse code insertion that confuses logic
flow and statement frequency analysis. These libraries
may be automatically created based on well-constructed
rules, guided by human interaction with code generators,
or manually created by creative software developers. Like
S-boxes, effective rewrite libraries will emerge with time
and analysis, based on environmental considerations such
as user application, source language, etc.

3.4.2 Interleaving and Inversion for Program
Transposition

Program transposition is accomplished through statement
reordering. Since randomly rearranging statement or-
der is almost assured to change the program’s function,
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Figure 5: Interleaved code

we must engage other approaches that have randomness
properties, but that also retain functionality. Often, in-
dependent segments may be merged with statements in-
terleaved with no functional impact. We give an example
of code interleaving in Figure 4 and 5, using source code
for clarity, though our efforts are largely geared towards
lower level code. We number the six reordered statements,
again to illustrate how changes may be moved up and
down the length of a code segment (Figure 5). We also
rename the variables to illustrate how code review may be
complicated during code interleaving. In some cases, the
name changes are neutral (e.g. changing the recognizable
name ”grades” to a neutral variable 'z’) while others are
intentionally misleading (changing "mean” to ”day”).

While not all segments can be merged, we can detect
segments that may be merged using properties such as at-
tribute independence, control flow complexity, and other
well-understood principles established in the compiler op-
timization field. We reemphasize that the intent of seg-
ment interleaving is to reorder code to diffuse the confu-
sion created by rewriting. A more direct diffusion method
is by statement to statement reordering. We may con-
struct a machine that examines adjacent statement and
reorders suitable pairs. Thus, like rewriting, a library may
be used to identify allowable exchanges.

The desired synergy is attained by the interactions
between rewriting and interleaving/exchanging. Each
rewrite produces different segments that may be inter-
leaved and new pairs that may be exchanged. Similarly,
each reordering operation creates new segments that may
be rewritten.
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4 Conclusions

Tamper-resistant software has many potential uses in
information systems, from protecting integrity in E-
Commerce applications, to protecting intelligence in com-
bat systems, to protecting intellectual property rights in
shrink-wrap software. This paper provides a foundation
for building tools that protect program intent from the
executing host. Some of the concepts described herein
are not new, but are formalizations of loosely constructed
notions discussed in other work. These provide the foun-
dation for the novel constructs and proofs that we provide.

Our contribution includes a model complete with def-
initions, protocols, and proofs that formalize the concept
of program intent protection. While our goal is conser-
vative relative to earlier models such as VBB, we show
how we can contribute to important security properties
with measurable results. We define what it means for a
program to be understandable and what a random pro-
gram is. We also detail notions of program equivalence
as a mechanism used to understand intent protected pro-
grams. We synthesize these definitions into a model for
describing and analyzing properties of program intention
protection mechanisms.

This framework enables us to construct mechanisms
with provable intent-protection properties and we pro-
pose such mechanisms as the first steps in construct-
ing an approach to producing executably-encrypted pro-
grams. We give a general mechanism for protecting pro-
gram intent against black box analysis and prove that
the mechanism is strong. Finally, we offer a structure
for protecting programs against execution-based analysis
based on the proven cryptographic synergy of confusion
(through rewriting) and diffusion (through segment inter-
leaving and statement exchanging).

Finally, we introduce the notion of program encryp-
tion as the combination of white and black box code pro-
tection. Like data encryption, program encryption pro-
tects the plaintext’s meaning. This is powerful protection
that preserves code privacy and prevents semantic attacks
against mobile code, essentially reducing the adversary to
blind disruption.
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