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Abstract—The question of whether obfuscators enjoy well 

defined security is an important issue to the security and 
software development communities. It is widely believed that 
general obfuscators do not exist. We consider circuit obfuscators 
that do not have either the functionality property or black box 
property described by Barak et al.: namely the obfuscated circuit 
is semantically different from the original circuit but the output 
of the obfuscated circuit is recoverable. Moreover, we show that 
a general obfuscator can be created in our model that is not 
subject to Barak’s proof. We show the usefulness of such a 
security model for defining intent-protected programs. We assert 
the usefulness of a combined black-box and white-box protection 
based on the indistinguishability of circuits in a large selection 
class and present initial results for defining obfuscators with such 
qualities. 
 

Index Terms—Communication system security, Circuit 
obfuscation, tamper resistant software, code entropy 
 

I. INTRODUCTION 
ne definition of obfuscation is the ability to efficiently 
rewrite a program so that an adversary who possesses the 

obfuscation gains no advantage beyond having observable 
program input/output behavior. This intuition has received 
substantial research and applied attention, yet a gap currently 
exists between practical and theoretical obfuscation security 
[1,2,3,4,5,6].  

The current de facto standard theoretical obfuscation model 
is the Virtual Black Box (VBB) paradigm [7]. Barak et al. 
prove that there is a family of functions that cannot be 
obfuscated in VBB, and thus that efficient, general 
obfuscators do not exist. Wee [8] proved that particular 
classes of point functions, whose result is true on one and only 
one input and false otherwise, are obfuscatable given certain 
complexity assumptions. Lynn et al. [9] provide variations for 
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protecting point functions based on random oracles while 
Canetti [The current de facto standard theoretical obfuscation 
model is the Virtual Black Box (VBB) paradigm [10]. Barak 
et al. prove that there is a family of functions that cannot be 
obfuscated in VBB, and thus that efficient, general 
obfuscators do not exist. Wee [11] proved that particular 
classes of point functions, whose result is true on one and only 
one input and false otherwise, are obfuscatable given certain 
complexity assumptions. Lynn et al. [12] provide variations 
for protecting point functions based on random oracles while 
Canetti [13] demonstrates cases where oracles are replaced by 
hash functions. Goldwasser and Kalai [14] show that you 
cannot efficiently obfuscate function families with respect to a 
priori information given to adversaries—giving unconditional 
impossibility results under VBB unrelated to one-way 
functions. 

Barak et al. claim that the virtual black box paradigm is 
inherently flawed. Researchers suggest that two directions are 
left to pursue based on these foundations:  

1) Are there weaker or alternative models for obfuscation 
that provide meaningful results?  

2) Can we construct obfuscators for restricted but non-
trivial/interesting classes of programs?  

In other words, can practical obfuscation methods be proven 
secure against some threats and attacks, but not necessarily 
all? In this paper, we offer an alternative model for describing 
obfuscation security strength based on the complementary 
notions of random programs and black-box semantic 
transformation [15,16]. We provide a basis for understanding 
intent-protected programs using this paradigm and consider 
obfuscators that make random selections from a set of black-
box protected programs. As a result, we relax both the hiding 
property and the class of programs that are obfuscated. We 
purposefully produce obfuscated programs that are not 
semantically equivalent to the original version so that M(x) ≠ 
O(M(x)) and we show that a general obfuscator exists in our 
model that is not subject to Barak’s impossibility proof.  

A. Intent Protection 
We begin with an intuitive description of program intent 

protection, and define the model in the next section. We can 
think of intent protection as a game between a developer and 
an adversary that desires to (1) manipulate code in order to 
attain a known output effect, (2) manipulate input to attain a 
known output effect, or (3) understand the program’s function 
for use with contextual information.  

Consider an industrial application on a stolen laptop. An 
adversary may desire to know how the laptop owner generates 
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business or financial estimates, how their decision process 
works, or other business or organizational information. For a 
black box protected program, the enemy cannot determine the 
device’s function from an arbitrary number of input-output 
pairs. However, if the enemy is sophisticated, they examine 
the executable code structure or analyze the application’s 
control flow and data manipulations as they occur. Programs 
that are white box protected prevent the enemy from learning 
the program's intent by watching its execution. We consider 
models for expressing the security strength of such intent-
protection obfuscators in this paper and next discuss our 
definition for program understanding. 

B. Program Understanding 
We consider four distinct, but related program 

understanding paradigms. In the first, we consider the generic, 
intuitive notion of “understanding” that an adversary’s ability 
to anticipate a program’s operational manifestation(s) reflects 
their program understanding. Secondly, an adversary may 
gain intent indications by comparing the obfuscated code, or 
segments, to known code libraries. Third, we recognize 
VBB’s theoretical and practical importance. Finally, 
information content in program code is our primary focus. 

There is a mountain of data encryption that provides 
important insights into understanding information and its 
representations. We contend that programs are no more than a 
special information class with well-defined syntax and 
semantics. Moreover, scrambling techniques are limited 
because the final form must adhere to this rigid syntax and 
semantics. However, program code information content is 
otherwise equivalent to information content in any other type 
of bit stream. For example, program code that is statistically 
indistinguishable from a random bit stream has negligible 
information content, as is shown in [12]. Of course, 
meaningful applications cannot simulate random bit streams 
because they must adhere to the target machine architecture. 
Thus, from an information theoretic viewpoint, the best we 
can hope for is to create an obfuscation that is 
indistinguishable from any other program in the target 
architecture. 

II. DEFINING OBFUSCATION 
Obfuscation’s goal is to prevent an adversary from using 

the program’s code to better understand the original program’s 
intent. We say “better understand” because there are few, if 
any, applications where a client would execute completely 
unknown mobile code. So, obfuscation cannot prevent 
contextual understanding, just as encryption, by itself, can not 
prevent, say traffic analysis. However, there is much that we 
can do. One security approach is to identify threats or attack 
types, then engineer systems that overcome those known and 
potential threats. The two classical approaches for defeating 
program obfuscation are black-box and white-box analysis. 
These attacks are independent in that one need not exercise 
one in order to leverage the other and complementary in the 
sense that they can be used together to identify program 

properties and intent. We contend that an obfuscator that 
retains semantic equivalence to the original program cannot 
obfuscate a program that reveals its intent through black box 
analysis. That is, no matter how scrambled the code, any 
reasonable adversary can reveal the program’s intent. 

We characterize intent-protection schemes based upon 
black-box and white-box definitions. This framework defines 
random programs and leverages the inability to distinguish 
circuits of an appreciably large size. In the next subsection we 
give our definition for protecting against input/output analysis.  

A. Black-box Protection 
A natural way to try to identify a program's intent is to analyze 
known input/output parings. This approach is widely known 
as black-box analysis since the program is treated as an oracle 
(black-box) without any insight into its internal workings. 
Definition 1 describes black-box understandability based on 
the ability of the adversary to guess or compute the input of a 
program based on the observed output.  

Definition 1. Program P → {X,Y} is black-box 
understandable if and only if, given an arbitrarily large set 
of pairs IO = (xi, yi) such that yi = P(xi) and yj an arbitrary 
element of Y with (xj, yj) not an element of IO), an 
adversary can efficiently guess xj such that yj = P(xj) with 
greater than negligible probability. Otherwise, we say P is 
black-box obfuscated. 

Traditionally, obfuscation involved producing program 
versions, where one version is understandable, but the 
obfuscated version is not. As noted earlier, obfuscation in this 
model is impossible. We introduce a different model and 
consider obfuscators that take a program (p) and generate a 
new program (p') with an associated recovery program (r). 
The recovery program has the property that p(x) = r(p'(x)). 
The fundamental property of the model is that output of the 
executably obfuscated code (p') is not equivalent to the output 
of the original program (p), a property reflected in Sander and 
Tschudin’s homomorphic encryption scheme [17] and others. 
Our obfuscation process uses a key that provides security 
control and allows correlation with data encryption paradigms, 
since its security is only dependent on the key.  

In Figure 1, transformation process t generates a black-box 
unrecognizable program p' based on composing program p 
with a strong data encryption algorithm e so that for all x ∈ X, 
p'(x) = e(p(x)). This process protects p‘s intent against black-
box analysis because p’ is one-way.  

Lemma 1. Any program that implements a 
cryptographically strong data encryption algorithm is black-
box obfuscated.  
Proof: Arbitrarily select the crypto-graphically strong data 
encryption algorithm E, a plaintext message m, and 
encryption key k. Assume E is black-box understandable. 
Then there exists y = E(m, k) where an adversary can guess 
m given y with negligible probability. This violates strong 
data encryption.  
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Black-box obfuscated programs are the foundation to protect 
against out-of-band, white-box analysis. 

 
Lemma 2.  Programs that are not one-way cannot be 
obfuscated by an obfuscator where O(p) = p’ if p’(x) = 
p(x) for all x.  

Proof:  Follows directly from Definition 1.  

 
Theorem 1. Let t(p, E, k) = (p', r) be a process that 
creates program p' by composing the output of 
program p to the input of a data encryption program 
E. Then p' is black box obfuscated.  
Proof: Follows directly from Definition 1 and Lemma 
1. If E is black-box obfuscated, then p' is also black-box 
obfuscated since the output of p' is [also] the output of 
E.  

 
By ensuring that every obfuscation is a strong one-way 

function, our model alleviates all black box analysis threats. 
An interesting and important side effect is that this property 
also simply and absolutely insulates our model against the 
Barak impossibility result. In [7] the impossibility proof 
technique relies on a Turing machine decider that can detect 
whether a given function is a certain type. In our model, this 
proof technique cannot apply, since every obfuscation is a one 
way function. There are no point functions (the type of 
function that Barak et al. use), nor are there any other 
functional program categories.  

B. White-Box Protection 
Classic security research reveals many reasons to seek 

strong program obfuscation theory and technology. One 
important application is to protect secret keys in untrusted host 
environments [18], which is one goal of our research. 
Protecting the seam between two composed programs is 
another canonical obfuscation goal that is central to our 
model. Recall that we compose the protected function (A) with 
an encryption function (E) to provide black box protection. If 
the adversary can identify the seam between A and E through 
white box analysis, the black box protection provided by E 
disappears.  

White box security encompasses both cases. White-box 
security is the ability to shield program intent from code 
analysis. Thus, white box protected obfuscations protect 
against analysis intended to reveal embedded data, seams 
between functions, the number of functions, or other such 
program properties.  

Traditional obfuscation applies data and control flow 
confusion techniques to complicate attacks, with little 
measurable protection. We intend to provide systematic, 
measurable defenses against white-box threats.  

C. Comparing Random Data and Random Programs 
Unbiased selection is one way to think of randomness. 
Generally, if we select an element from a population without 

bias (i.e. each population member was equally likely to be 
selected), that element is a randomly selected element of the 
population. The element itself is no more “random” than any 
other element; only the unbiased selection gave the element 
the random property. More specifically, we can only select a 
random bit if we can construct an unbiased selection process, 
where 1 and 0 are selected with equal likelihood. 

Unfortunately, this problem is impossible in practice (we 
cannot create a perfect coin, etc.) but science has rendered 
many excellent simulators that provide nearly random bit 
selection.  

We stress here that only selections that are absolutely 
without bias produce random selections; if those selections are 
bits, we refer to their conglomeration as random bit stream. 
Perfect data encryption rests on generating cipher text that is 
indistinguishable from a random bit stream of the same length. 
The [accurate] intuition here is that cipher text that closely 
simulates randomness is unlikely to give away any hints about 
the corresponding plaintext. 

We extend that notion to expect that a stream that reflects 
strong randomness properties also has high entropy and low 
information content and reveals only confusion, thus 
protecting secrecy, under inspection and cryptanalysis. We 
leverage this paradigm and transfer its notions from data 
encryption and protecting information secrecy to programs 
and code, and to protect program intent. 

Random programs [15] are similar to randomized data 

produced by strong data encryption algorithms. Digitized 
random data, for example, has no discernible patterns and in 
whose bit representations each bit is equally likely to be zero 
or one.  

         Figure 2: Random Program Selection
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Similarly, given the infinite set PA that contains all programs 
that implement some functionality A and the large, but finite 
set PX that contains all programs of length X, the intersection 
set PAX contains all programs that are of size X and that 
implement A. If we randomly choose q from PX, we consider 
q to be a random program. Figure 2 illustrates the 
relationship between PX, PA, PAX, and the selection of random 
program q.  

Random selection is only valuable if it provides or ensures 
entropy in some form. Just as randomness properties for 
strings (no patterns or lengthy uniform sections, similar # of 
zero/one, etc.) only emerge as string length increases, so 
program entropy only emerges as program size increases. 
Intuitively, there are many more ways to write an 
unrecognizable program, e.g. to write in unintelligible 
spaghetti code, than there are to write versions that reveal 
their intent through static analysis.  

Hypothesis 1.  Entropy of randomly selected programs 
increases exponentially on the program size. 

We accept this hypothesis without proof, though we make 
an argument relative to random circuits later. Given 
Hypothesis 1, we may characterize program encryption 
strength as its ability to select a program randomly from a set 
of equivalent, bounded implementations. Classically, such 
mechanisms are measured based on an adversary’s ability to 
distinguish an executably encrypted (i.e. randomly selected) 
program p’ of size x that implements A from a random 
program q of size x, that does not implement A. If the 
adversary can distinguish p’ from q, then the program 
obfuscation / encryption may leak the intent of p. A secure 
obfuscation produces a program p’ that is indistinguishable 
from a random program selected from the set of all programs 
the same size as p’.  

 To fully protect intent under white-box protection, an 
obfuscator must systematically confuse p' so that an adversary 
cannot learn anything about program intent by analyzing the 
static code structure or by observing program execution. The 
confusion must make the code and all possible execution 
paths that it produces display random program properties. For 
example, if a sophisticated adversary can distinguish between 
the functional program and the composite encryption program, 
they may be able to extract valuable intent information. 
Definition 3 extends the white-box protection definition and 
defines full intent protection as preventing all combined 
means of analysis to discover programmatic intent. 

Definition 2. Given access to a random program oracle 
which transforms any program p using algorithm E(p) into 
an encrypted version p’, and given full access to any 
encrypted program p’x: After knowing any n pairs of 
original and encrypted programs {(p1, p’1), (p2, p’2), …, 
(pn-1, p’n-1), (pn, p’n))}, an adversary that supplies a 
subsequent program pn+1 will receive pn+1’ from the oracle 
which is either: a random program (PR) or the encrypted 
version of the program pn+1’ = E(pn+1). The program E(p) 
provides white-box protection if and only if the probability 
that an adversary is able to distinguish the encrypted 

program (pn+1’) from a random program (PR) is ½ + ε, 
where ε is a negligible constant.  

 

 

Definition 3.  Program P is intent protected if and 
only if it is protected against black-box analysis and 
white box analysis. 

D. Comparing Data and Program Encryption 
Data cipher security properties are analyzed in one of two 

viewpoints: 1) information theory or 2) complexity. Data 
encryption strength is often reflected by properties such as 
whether possible breaks are reducible to known hard problems 
(e.g., factoring). Asymmetric ciphers use trapdoor one-way 
functions based on algebraic groups or rings. Symmetric 
cipher security proofs, on the other hand, do not rely on 
number theory. Confusion, diffusion, and composition 
operations form the foundation for the Data Encryption 
Standard (DES), AES, RC4, etc. Security proofs leverage 
Shannon’s perfect secrecy [19], though security confidence 
relies on the fundamental theory of cryptography, i.e. that no 
easy attacks on symmetric schemes like DES have been found 
despite voluminous research efforts over the years1. 
Symmetric cryptosystems rely on brute force exhaustive 
search as their strength metric. Yet, symmetric ciphers are 
widely accepted as strong, despite absence of mathematical 
proof formulations.  

 There are two analogous threads in program obfuscation 
research. The Virtual Black Box is the de facto standard 
“provable security” approach, pitting the ability of a Turing 
machine given obfuscated code against one with only oracle 
access to the original function. Conversely, we use random 
programs as a baseline to measure program intent protection 
through entropy. Figure 3 summarizes these notions.  

 Practical program obfuscation techniques are, in large part, 
observation generated. Software engineers have known for 
decades that certain program structures reveal more about 
program intent than others. These intuitions led to obfuscation 
techniques such as adding ruse code, eliminating structured 
constructs, generating “elegant” algorithms, type casting, code 
reordering, code interleaving, and many others. The 
foundation was that if structured, concise code is easy to 
understand, then non-structured, elaborate code must be 
difficult to understand.  

Unfortunately, the software engineering model that seeks to 
understand code and the security model whose goal is to 
protect intent do not correspond well at their extremes. 
Specifically, to protect intent against sophisticated intruders is 
fundamentally different than revealing intent to maintenance 
programmers. Thus, program obfuscation techniques focus on 
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confusing code, with little theory or evidence that independent 
mechanisms are complementary, or even that they are not 
counter-productive. 

We contend that we can measure confusion by comparing 
our systematically obfuscated code (hereafter referred to as 
“encrypted code”) or circuits against random code or circuits. 
We adhere to Kerckhoffs’ security principle and leverage 
substitution and permutation engines similar to symmetric key 
encryption techniques, thus consider our techniques program 
“encryption” rather than program “obfuscation”. Our 
obfuscated modules are key-based and executable, unlike 
Aucsmith’s approach [20] that utilizes a key to generate 
pseudorandom blocks of encrypted code that are decrypted 
just prior to execution).  

 Program (or circuit) encryption mechanisms are key-based 
functions, with corresponding recovery mechanisms. These 
algorithms produce programs with well understood 
randomness properties. Program protection algorithms which 
rely on confusion, diffusion, and composition strategies are 
not necessarily weaker than mathematically based functional-
transformations such as homomorphic encryption schemes. To 
illustrate, consider permutation and substitution data ciphers. 
Permutation, or transposition shuffles the order, where the key 
dictates the shuffle order; when used alone as a data cipher, 
permutation diffuses data across cipher text but is not 
cryptographically strong alone. When applied by itself, it 
might be viewed as a method of data obfuscation. Data 
substitution (or replacement), when used as a lone cipher 
technique, confuses bits within a ciphertext but is not 
individually cryptographically strong either—it can also be 
rightly considered a form of data obfuscation. When these 
techniques are strategically composed, they can create strong 
encryption, evidenced in well-known symmetric ciphers like 
DES. Even though DES strength is difficult to mathematically 
express in other than brute force terms, it is a recognized 
strong cipher that has no known attacks significantly more 
efficient than brute force key discovery.  

We leverage the program encryption analogy that uses 
                                                                                                     
1 Observation from RSA Security, http://www.rsasecurity.com 

confusion and diffusion that are not strong themselves, but 
when composed in systematic, round-based algorithms 
produce executably encrypted code. Program encryption 

security analysis is not tied to VBB; instead, we use the 
random program model and offer an alternative view for 
security analysis. 

III. INTEGRATING CIRCUIT AND PROGRAM ENCRYPTION 
Under Definition 1, the goal of black-box intent discovery 

by an adversary is to establish the I/O relationship that exists 
for an obfuscated program p’. If the adversary cannot find the 
functionality class A given runtime analysis of the obfuscated 
version p’, black-box protection is achieved. By definition, the 
family of all programs that implement one-way functions 
consists of programs whose input/output behavior is hard to 
learn. The security game played with an adversary involves 
not knowing or being able to determine a program’s the I/O 
class or functional category.  

In Definition 2 we express how to measure whether an 
adversary has an advantage when given the obfuscated 
program (code) or circuit over oracle-only access to the 
original program. We analyze whether the adversary 
distinguishes the obfuscated program from a randomly 
selected program of the same size. This includes an adversary 
who not only performs black-box analysis but also performs 
static or dynamic analysis of the code itself, specifically to 
determine program intent. To reiterate, we do not attempt to 
prove general security against all-powerful adversaries—
rather we seek a more narrowly defined goal of intent 
protection and a framework to evaluate security of practical 
obfuscation techniques. 

A. Black-Box Program Intent Protection 
In our model, obfuscation must protect against black box 

analysis, essentially preventing an adversary from gaining 
intent understanding by examining an arbitrary number of 
input-output pairs. A natural intuition is to consider only 
obfuscating one-way functions, whose output is inherently 
black box protected. We capture this notion in Definition 1. 

Asymmetric Data Encryption Symmetric Data Encryption 
Based on mathematical algebraic primitives Based on repetitive permutation/substitution 

Provably secure relative to mathematical theory Time-tested,  secure based on limited resources 
Key-based, systematic, recoverable 

Seeks to create ciphered data with discernible randomness properties 
  

Program Obfuscation Program Encryption 
Spurious, heuristic, limited Based on repetitive, heuristic use of  

Composed permutation/substitution primitives 
Not provably secure in the general case (VBB);  

secure in limited contexts [8] 
Time-tested / complexity  

(secure based on limited resources) 
Mechanism-specific, non-generalized Key-based, systematic, recoverable 

Seeks to protect programs against 
 specific attacks using specific techniques 

Seeks to create ciphered programs with discernible  
properties of randomness 

Figure 3: Comparing Data Ciphers with Program Obfuscation/ Encryption 
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The term “trapdoor one-way function” describes 
cryptographically strong data ciphers (e) that use a plaintext x 
and key K to return a recoverable ciphertext y = e(x,K). 

We recognize a subclass of trapdoor one-way programs that 
has a special input/output relationship defined by a 
functionality class A and a program P ∈ A. Specifically, if we 
compose a program P that has a specific functionality A (P ∈ 
A) with a trapdoor one-way program (e(x,K)), we have 
programs consistent with those described in Theorem 1. We 
show this family of programs as the subset TDOWA. In other 
words, given the transformation process t of Theorem 1 that 
creates a specific subclass of programs in TDOW, a recovery 
algorithm r recovers the intended output y of any program 
P(x), given the output of y’ = pi’(x), where pi’ ∈ TDOWA. This 
set of programs is black-box intent protected under Definition 
1. 

From a compositional approach, black-box obfuscators O 
(under our Definition 1) that implement Theorem 1 are 
compilers that produce pi’ = O(P) from an original program P 
and a strong, trapdoor one-way program e such that pi’(x) = 
e(P(x),K). Here pi’ ∈ P’ and indicates that the set P’ contains 
all programs whose input/output relationship accommodates 
the domain of A and produces the range of E. A black-box 
obfuscator that meets Theorem 1 thus produces obfuscated 
programs whose input/output characteristics are consistent 
with E. We clarify that the selection of the particular class of 
functions E is a key-based decision part of the obfuscation 
process. Thus, E is randomized along with other parameters 
and the class A may itself include strongly one-way programs, 
trapdoor one-way programs, or data encryption algorithms.  

B. Intent Protection with White-Box Transformations 
At this point we refer specifically to Boolean circuits (using 

P’ to refer to a set of circuits) and of obfuscators that 
algorithmically manipulate circuits. Considering the stronger 
form of protection (from Definition 2 and 3), we investigate 
obfuscators that perform circuit transformations based on 
indistinguishability from a random circuit. Such white-box 

obfuscators assume circuits pi’ ∈ P’ as a starting point. Since 
P’ is infinitely large, we bound the possibilities by specifying 
only circuits with a maximum size N or less. For example, if E 
were the N-bounded family of Boolean circuits that implement 
the DES algorithm, all elements in E are circuits of size N or 
less that produce the mapping EDES,K: {0,1}64 →{0,1}64 based 
on 64 bit input and a 56-bit key K.  

 The specified maximum circuit size N represents the 
desired obfuscated circuit efficiency; we consider obfuscators 
that randomize a circuit in a way that circuit blow up is 
exponential unless bounded otherwise. The lower bound size 
of circuits in P’ is based on the size of the most efficiently 
reduced circuits that implement pi’(x) = E(P(x),K). A 
maximum circuit size N bounds the number of circuits that 
implement E.  Likewise, N bounds the number of circuits in 
the set of all trapdoor one-way functions. Figure 4 illustrates 
the relationship of sets SOW, TDOW, E, and P’.  

We base white-box protection on an indistinguishability 
argument. As Definition 2 states, white-box intent protection 
is achieved if a circuit obfuscator (encryptor) produces an 
obfuscation of P that is indistinguishable from a random 
circuit PR,. We use a random program (circuit) model as the 
basis for security and ask whether obfuscators exist that 
achieve intent protection. 
We again leverage the well understood notion of traditional 
data ciphers to illuminate our paradigm. Strong data 
encryption produces ciphertext that is indistinguishable from a 
string chosen randomly from the set of all strings of the same 
size. Cryptographically strong data ciphers that use 
permutation, substitution combinations accomplish this 
successfully. Our desire is to design or find obfuscators that 
utilize circuit permutation and substitution to produce 
randomized circuits; these randomized circuits are 
indistinguishable with respect to P from any other circuit of 
comparable size chosen randomly. If random circuit selection 
provides white-box protection, as we contend, then our effort 
is reduced to finding mechanisms that produce suitably 
randomized “cipher code” (to coin a phrase).  So, black-box 
analysis is defeated by semantic transformation on P to pi’ 
while static analysis is prevented by randomization of pj’. 
In Figure 5, we highlight the initial steps of an obfuscator that 
takes circuit pi’ and produces another semantically equivalent 
circuit pj’ ∈ P’. The obfuscator must ensure that the selection 

Figure 4: White Box Protected Programs

 

All Terminating Programs  
 
 
 
 
 
 
 
 

Strongly One-way Programs (SOW) 
 
 
 Trapdoor One-way Programs (TDOW) 

TDOW Programs that implement a 
specific functionality (TDOWA) 

White-box protected, strongly 
one-way programs that 

implement specific functionality 
(WBp) 

Figure 5: One Way Functions 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7

of pj’ from the set P’ is uniform, random, key-based, and 
repeatable. Our claim is that if we randomly select a circuit 
from P’, this selection is indistinguishable from a random 
selection from the set E. We further investigate whether the 
selection of pj’ is indistinguishable from a random circuit 
selection taken from TDOW and from SOW.  
We have two goals based on these foundations. First, if an 
obfuscator randomly selects a bounded size circuit from P’, 
this selection is indistinguishable from a bounded size circuit 
randomly selected from E. Secondly, we investigate whether 
obfuscators exist that randomly select circuits from P’. The 
secondary goal has to do with practical implementation of the 
first and we discuss our initial results toward that aim. In a 
sense, the second step corresponds with classic efforts to 
confuse code. While other approaches lack structure, in our 
approach, there is a well understood goal (randomization) and 
a metric (non-linearity). 

C. Distinguishing Random Selections of P’ from PR 
A circuit’s behavior is reflected by its input/output 

mappings. Such mappings are commonly summarized either 
by truth table or the characteristic Boolean function of the 
circuit in some reduced, canonical form. By definition, circuits 
in P’ are not analyzable by their input/output mappings—they 
are indeed hard to learn based on their membership in the set 
of all one-way functions. Given a circuit {0,1}64 → {0,1}64 
with an appreciably large input size (64 bits) and appreciably 
large output size (64 bits), the truth table for such a circuit has 
264 rows. Without being able to analyze the input/output pairs 
of circuits in P’, no link to an original P is possible on the 
basis of input/output analysis alone. An adversary must then 
analyze circuits in P’ using combined static and dynamic 
techniques.  

There are uncountably many circuits in the unbounded sets 
E and P’. Given only circuits of size N, E and P’ are finite and 
allow possible uniform selection. We assume a standard 
Boolean circuit definition as a directed acyclic graph that uses 
nodes for gates and edges that correspond to signal 
connections between gates. Given some number of possible 
Boolean gate types, there is a large but countable set of 
circuits of size N or less that implement E and that ultimately 
compose P’. P’ is extremely large, but finite, and E is by 
implication much larger. We stipulate that at least one element 
of the set P’ is selected by the obfuscation algorithm: the 
circuit created by black-box protection using the Theorem 1 
(pi’) transformation. However, by applying both sub-circuit 
confusion and diffusion to pi’ in a round-based, repetitive 
manner, we select an equivalent, random circuit from P’ 
which we refer to as pj’. 

Given a mechanism (obfuscator) that randomly selects a 
circuit from the set P’, we assert that such a circuit is 
indistinguishable from a randomly chosen circuit from the set 
E. The group of all permutations of {0,1}64 is considered large 
enough to satisfy a brute-force discovery of the key (having 
264! elements), even though some attacks on DES slightly 
reduce the number of plaintext/ciphertext pairs required to be 
successful. We draw a parallel and say that the number of 

representations for circuits that implement P’ with 
characteristically large input/output {0,1}64 → {0,1}64 form a 
pool for random selection. Recall that selection from P’ does 
not preserve thte original functionality, but preserves the black 
box protected functionality. This selection distinction allows 
successful intent protection. 

To amplify the size of sets P’ and E, consider the set B of 
all circuits that implement the AND function. If we fix input 
size to be two (x0, x1) and output size to be one (xK-1), B 
contains circuits of size 3 or above, where size is the number 
of edges in a directed acyclic graph representing the circuit 
with a truth table output of [0, 0, 0, 1]. We assume logic gates 
are binary functions for AND, OR, XOR, XNOR, NOR, or 
NAND. We can enumerate all node arrangement possibilities 
and with N or fewer edges. Through experimentation, we 
count the number of circuit representations that produce the 
characteristic [0, 0, 0, 1] function, demonstrating exponential 
blowup in the possible number of AND function 
representations as N increases. For example, when N is 4, 
there are 66 total possible circuit combinations (circuits of size 
4 composed of any legal combination of 
AND/OR/XOR/XNOR /NOR/NAND gates) ; three of these 
circuits constitute the set B: [x2=x1 AND x0] , [x2=x1 XNOR 
x0, x3=x2 AND x1], and [x2=x1 XNOR x0, x3=x2 AND x0]. 
Table 1 shows the increase of |B| as 81 (N=5); 971 (N=6); 
22,881 (N=7); 581,203 (N=8); 14,793,117 (N=9); and so 
forth. The set B of circuits size 9 or less that all implement 
AND contains nearly 15 million circuits. Any selection from 
this set gives a circuit with equivalent logical AND 
functionality.  

This illustrates that for complex functionality, the number 
of circuits implementing that functionality is large, but can be 
bounded. E and TDOW are much larger than P’, Yu et al. [21] 
demonstrate the ability to hide redundant gates that are part of 
a (small) garbled circuit by creating a uniform circuit topology 
independent of output size. Such uniform topology indicates 
that circuit transformations can prevent the adversary from 
identifying redundant gates. Assuming a linear increase to the 
circuit size, we see an increase in the 
complexity/understandability of a Boolean circuit by 
converting all gates to an atomic gate type such as NAND or 
NOR.  
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D. Creating Obfuscators that Randomly Select Programs 
Given a binary string representing a circuit, our process 
selects legal sub-circuit substitutions-permutations that 
preserve circuit functionality. The resultant binary 
representation reflects these transformations and mimics data 
plaintext replacement with an equivalent cipher-text substring. 
Security strengty comes the ability to perform key-based 
operations that are random and uniform across the plaintext. 
This is normally accomplished one plaintext block at a time 
and returning recoverable ciphertext blocks. In confusion-
diffusion approaches, each block is transformed by a series 
key-based operations that include some type of non-linear 
substitution on small portions of the string (4 bits for example) 
and then permutation across the entire string. 

We leverage non-linear substitution for sub-circuit 
replacement within a parent circuit. Even thought circuits in 
P’ are large, we deal with fixed (small) size sub-circuits and 
create sets (substitution boxes) of circuits that preserve 
functionality (i.e., produce the same truth table). The intuition 
is that given a bounded size circuit, if sub-circuits are 
randomly chosen and replaced repetitively (up to some 
number of rounds), the resultant circuit has properties 
consistent with a randomly selected circuit from the pool of 
circuits P’. 

 
In the case of data S-boxes, bit strings are transformed from 

larger to smaller sizes. In the case of circuits, we replace a 
circuit of some (small) size with an equivalent circuit of 
closely smaller, equal, or greater size that has equal number of 
inputs and outputs. We assume initially that circuit 
substitution boxes produce equivalent sized circuits. 
Cryptographic algorithms based on the strength of non-linear 
substitution also rely on a given number of 
confusion/diffusion rounds. We define a circuit substitution 
operation as a non-linear equivalent replacement of a sub-
circuit and a circuit diffusion operation as a substitution that 
comes as a result of two different replacement operations.  

Figure 6 shows a notional circuit transformation where two 
other sub-circuit replacements diffuse the original 
functionality. We start with pi’ and apply round-based sub-
circuit selection- replacement so that all pi’ gates are 

considered for replacement at least once. Each selection-
replacement round within P’ is key-based. Unlike block-
ciphers, not all circuit definition blocks are contiguous. This 
dictates multiple selection/replacement rounds using various 
(small) input size and output size sub-circuits. A one-time, up-
front cost is required to create equivalence classes for 
circuits—much like the requirement to design S-boxes part of 
symmetric data ciphers. 

An obfuscator that takes a circuit pi’ and produces an 
equivalent circuit pj’ based on this process produces a string 
representation of pj’ that properties consistent with a random 
circuit. In particular, the binary string representations of pi’ 
compared to pj’ would map closely to the plaintext/ciphertext 
pair produced by a symmetric data cipher like DES. If the 
obfuscator functions in this manner, the resultant circuit is 
indeed indistinguishable from a random circuit. Figure 7 
illustrates our vision for incorporating such a circuit 
obfuscator into a higher level algorithm that provides program 
intent protection.  

IV. CONCLUSIONS 
We offer a new program intent protection paradigm. We 

provide program obfuscation evaluation mechanism based on 
random program indistinguishability and prove how to attain 
absolute black-box protection. An important contribution is 
our white box protection approach. By developing obfuscators 
that randomize circuits through permutation-substitution 
rounds, the resultant circuit is indistinguishable from any 
circuit chosen from a collection of circuits in that size range. 
We appeal to both the indistinguishability of a circuit chosen 
from a large group and the inability of an adversary to realize 
the original input/output relationships of an original program 
P from its obfuscated version found in P’. Our methodology 
for considering obfuscation is analogous to the way in which 
ciphertext strings are analyzed in traditional data ciphers. Its 
proof or disproof is linked to the same way in which 
cryptographic primitives based on confusion/diffusion 
primitives are considered.  

Most recent work in this area is based on 
algebraic/combinatorial primitives and they are considered 
more viable for proving security than their symmetric data 
cipher counterparts. While obfuscation is impossible in that 
model, our model is not subject to the same limitation. Our 

 

Figure 7: Circuit Encryption Process

Figure 6: Circuit Substitution and Permutation 
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research leverages confusion technology that many 
symmetric-based algorithms have proven to be as hard to 
break and more efficient number theoretic approaches. 
Obfuscators, though they have been used for a number of 
years, face an uphill battle in understanding their theoretical 
value for security. We attempt to bridge that gap by posing an 
alternative means for viewing security and laying groundwork 
to see whether obfuscators exist that achieve program intent 
protection. 
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