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Abstract 

 

Protection of agent data state and partial results in 
mobile agent systems continues to draw research interest.  
Current solutions to integrity attacks are geared at 
detection of malicious activity a posteriori.  We propose 
multi-agent architecture that uses cooperating multi-hop 
and single-hop agents to prevent such attacks and discuss 
security features of our scheme.  We also examine data 
protection services and the means for collecting agent 
data state in this context. 
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1   INTRODUCTION 
 

Mobile agents are a method for implementing 
distributed systems and an emerging abstraction for 
architectural program design.  Unresolved security issues 
continue to be cited among other reasons why mobile 
agents have not achieved widespread implementation [1].  
Research continues to formulate mechanisms that secure 
the computational state of mobile agents in the presence 
of malicious hosts. Protecting an agent consists of two 
primary features: protecting the static executable code of 
an agent from disclosure or alteration and protecting the 
dynamic state of the agent as it incrementally changes 
during execution.  We focus on the protection of the 
intermediate data results an agent gathers as it migrates 
through a network. 

 

Agent data protection is concerned with keeping the 
state of an agent safe from observation (confidentiality) or 
keeping it safe from alteration (integrity) by malicious 
hosts.   Integrity violations are typically only detectable 
after the agent returns to its origination, when it reaches 
an honest host in the itinerary, or when it stores partial 
results with a trusted third party.  Our proposed 
architecture supports prevention of integrity violations 
(without data aggregation) and detection of these 
violations (with data aggregation) by using multiple 
cooperating agents to accomplish user tasks. 

 

Essentially, we distinguish between the tasks of data 
computation and data collection, and assign these tasks to 
different classes of cooperating agents. This architecture 
provides security features ideal for protection against 
classical data integrity attacks such as insertion, deletion, 
and alteration of intermediate results. The novelty of our 

approach is in part the formalization of using different 
classes of agents to perform information computation and 
gathering. Essentially, our scheme relies on three 
cooperating types of agents: some agents performing 
computations, some managing tasks, and other agents 
carrying computational results back to the originating 
host.   

 

The rest of the paper is outlined as follows.  In 
section 2, we provide background and review existing 
literature.  In section 3, we introduce separation of agent 
data computation from agent data collection and outline 
our approach to integrity of data using multi-agent 
architecture.  Section 4 provides conclusions and a 
discussion of benefits and issues related to our approach.  
 
2 RELATED WORK 
 

Mobile agents are sent to gather information and 
perform tasks on behalf of a user, migrating to the source 
of information and reducing network bandwidth of 
messages required to process data. An agent is seen as a 
migrating program that has both a static part (code) and a 
dynamic state (data). Each host execution can be said to 
add new information progressively to the data state of an 
agent.  Initial work in mobile agents such as [2] identified 
two modes of information gathering: stateless and 
stateful. In a stateless approach, agents can intermittently 
or at every hop send information acquired back home to 
the originator.  In a stateful mode, the agent embodies in 
its data state the results of each host execution and carries 
with it a growing collection of information to each 
subsequent host in its itinerary.   In this regard, we 
formalize in our architecture a mechanism by which both 
stateless and stateful integrity protection mechanisms can 
be incorporated into mobile agent interactions with the 
use of multiple classes of agents.        

 

The use of multiple agents and transfer of partial 
results for safekeeping during agent migration are 
considered in other works as well.  Roth in [3] proposed 
that an agent could transfer commitments to another 
cooperating agent that can verify and store the 
information gathered.  In [3], agents are sent to disjoint 
sets of hosts and in turn can send each other commitments 
of current hosts via a host-provided secure 
communications channel.  This provides a level of non-
repudiation and requires a malicious host to corrupt other 
hosts that are on the co-operating agent’s future itinerary.   
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2.1   Partial Result Protection 
 

Chained encapsulated results [4], partial result 
authentication codes [5], per-server digital signatures [5], 
append-only containers [6], and sliding encryption [7] are 
all examples of solutions from early mobile agent 
research that provide various levels of intermediate result 
protection. These frameworks use digital signatures, 
encryption, and hash functions in different combinations 
of chained relationships to provide detection and 
verification services.  With these techniques, the 
originating host or an honest host in the path of an agent 
can identify when previous servers have inserted, 
truncated, or changed information from previous 
intermediate results carried by the agent.  Loureiro et al. 
proposed a subsequent protocol in [8] that would allow a 
server to update its previous offer or bid.  Roth has noted 
in [9] that many of these protocols suffer from replay and 
oracle attacks because they do not bind the dynamically 
collected data of an agent to its static code.   
 

When malicious hosts collude, these protocols are 
weaker in detecting activity in the face of cooperating 
hosts that share secrets and information to change 
intermediate host results.  Specifically, truncations are 
defined as integrity attacks where the data state of an 
agent is restored back to a state computed at a host that 
was previously visited in the itinerary. With the use of 
dynamically determined loose itineraries [3], detection of 
truncation attacks is difficult if not impossible in certain 
cases. 

 

Vijil and Iyer in [10] augmented the append-only 
container of [6] with a means to detect mutual collusion 
and actually identify which hosts performed the 
tampering.  Other recent work describes weaknesses of 
several protocols where truncations cannot be detected in 
certain cases.  Maggi and Sisto in [11] provided a formal 
definition to describe protocol interactions in several 
different data protection mechanisms.   In particular, they 
note that implementation of stronger forms of truncation 
resilience need to be implemented.  Our notion for multi-
agent architecture that separates data computation and 
data collection into different agent classes and services is 
inspired by this quest.  

 

2.2   Multiple Agents/Fault Tolerance and Security 
 

We propose to use multiple classes of agents that are 
given similar duties of either information computation or 
data gathering.  The use of multiple agents is also part of 
the domain of fault tolerance, which seeks to provide 
guarantees on agent migration and task completion.  
Extensive work has already been done with integrating 
and providing fault tolerance in mobile agent systems [12, 
13, 14]. Minsky et al. in [15] proposed that replicated 
agents and voting could be used to decide if malicious 
hosts have altered agent execution. Yee proposed a 
mechanism to detect replay attacks in [16] while Tan and 

Moreau extend an execution tracing framework in [17] to 
prevent denial of service attacks.  In terms of multiple 
agents, Tate and Xu utilize multiple parallel agents that 
employ threshold cryptography to eliminate the need for a 
trusted third party in [18].  Tate and Xu also noted their 
work was one of the first to consider multi-agent settings 
on the basis of their security benefits.  With our approach, 
we continue to analyze multiple agent architectures in 
mobile contexts on the basis of their security advantages. 
 

A distinction exists between using the same agent 
logic replicated multiple times [15, 18] and using different 
agents to accomplish a single purpose-driven task [2], 
which our scheme utilizes.  Work such as [19] has also 
tried to determine whether the use of multiple static 
agents is better than the use of multiple mobile agents 
from a performance perspective.  Kotzanikolaou et al. in 
[20] presented architecture where a master agent and a set 
of multiple slave agents are used together to conduct 
electronic transactions.  In [20], slave agents are mobile 
and travel to only one particular host to negotiate, but 
cannot complete a transaction without returning to the 
master agent.  Our approach is similar in the sense that we 
conceptualize a master task agent that spawns and directs 
information gathering from multiple computation and 
collection agents, and then carries out any transaction 
logic separately. 

 

2.3   Data Collection Services 
 

Our architecture also uses data bins that allow an 
agent to leave computational results in an encrypted, 
retrievable form.  Data lockers in [21] are described as a 
service provided for mobile users that keeps their data in 
secure and safe locations part of a fixed network. Our 
notion of a data bin is similar in that we envision a data 
service where intermediate results of agent computations 
can be safely stored during the transit of an agent through 
a network.  Our approach is motivated by the security 
properties that a data bin offers instead of convenience or 
accessibility that is associated with a data locker.  

 
3   MULTI-AGENT DATA INTEGRITY 
 

The simplest method of preventing data integrity 
attacks is to not put partial or intermediate results in the 
hands of potential malicious servers.  Reducing exposure 
or eliminating exposure of partial results all together is 
the essential idea behind our architecture.  Specifically, 
we envision three different classes of agents: task agents, 
computation agents, and data collection agents.    The task 
agent is responsible for the overall job a user wants to 
perform.  Computation agents replicate in a fault-tolerant, 
single-hop manner or can be embodied in a single multi-
hop agent to perform required computations.   Data 
collection agents are responsible for providing ad-hoc or 
continuous data state collection.   In essence, computation 
agents interact with hosts, under the direction of a master 
task agent, and leave partial results on the server where 
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Figure 1: Single and Multi-Hop Agent Interactions 
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they are produced via the use of a data bin service.  
Collection agents are assigned the task of gathering and 
returning intermediate results to the master task agent that 
can then filter and make decisions based upon predefined 
criteria.   

 

Our work involves prevention of manipulation, 
extraction, and truncation of information accumulated by 
an agent in a multi-hop free-roaming scenario. We do not 
address denial of service by a malicious host nor attempt 
to analyze whether a server has provided false 
information to the agent.  We do not address privacy of 
execution (the knowability of a given function) or 
integrity of execution in terms of random code 
modifications.  We assume that alterations to the static 
agent code are detectable by honest hosts when measures 
such as code signatures [5, 18] or execution tracing [22] 
are employed.  We also assume that a public key 
infrastructure is in place or at a minimum the ability to 
distributed shared secrets among participants of the 
mobile agent system. 
 

Various methods exist in the literature for formally 
describing the interaction of an agent with a host [8, 11, 
18] and each sets forth data privacy characteristics that 
various protocols support.  As illustrated in figure 1, an 
agent’s execution can be described by the set of hosts that 
it visits, {h1, h2, …, hk} and the associated set of data D, 
{d1, d2, …, dk}, that represents the incremental change in 
state of the agent as it visits each host and performs its 
task.  This view of agent data interactions is part of the 
traditional idea of a competitive, electronic transaction 
application of mobile agents where bids or offers are 
collected by agents in various contexts, such as airline 
reservation [2, 4, 5, 23].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As shown in [11], this set of data can be described as 
being either a sequenced or unordered collection of the 
relevant computational results gathered by the agent as it 
traverses its itinerary and performs its task.  Each host 

inserts a new result into the protected area of an agent in a 
manner that links the result to the previous results and/or 
the next host to be visited.  Assuming that the originating 
host is h0, the agent’s path could also be described as the 
set {h0, h1, h2, …, hk,h0}.  When an agent arrives back at 
its originating host, with task accomplished, the set of 
data results D’, {d`1, d2, …, d`k`}, will represent the 
incremental changes in state of the agent as it migrates 
around the network.  Figure 1 illustrates how the data set 
of a migrating agent essentially grows as each host 
executes the agent code, adding a data state to the 
protected area of a migrating agent.   
 

The set D’, indicated by figure 1, letter <B>, 
indicates what the agent does have on arrival back at its 
originating host and set D, indicated by figure 1, letter 
<A>, indicates the set of data results it should have.  The 
highest level of protection that can be achieved is known 
as strong data integrity and is defined as the ability to 
detect whether set D, {d1, d2, …, dk} ≠ set D’, {d`1, d’2, 
…, d`k`} on return of the agent to the originating host.  
Strong data integrity would also include detection of all 
truncation attacks, which is still not possible in all cases 
when colluding hosts are involved. 
 

3.1   Independent and Dependent Agent Data 
 

Independent data can be viewed as a collection of 
offers, bids, or results that are used by an agent to perform 
some type of decision based on those gathered results.  
Independent data is seen in a single-hop agent (also 
referred to as remote code execution [22]) that migrates to 
a remote host, performs its operation, and then either 
sends its result back to the home platform or migrates 
back to the home platform carrying the result. In other 
words, the “result” of the agent is independent from the 
“result” gathered on any other host platform where the 
same computation is carried out.   
 

When an agent migrates from host to host 
performing such a query or computation in a multi-hop 
mode, results of the current host are appended to previous 
results that are also carried by the agent.  Figure 1, letter 
<C>, illustrates migration paths of an agent that uses 
single-hop logic, returning to the originating host after 
each execution.  This type of computation can be 
performed by one single agent that makes k roundtrip 
migrations in a single-hop manner or by k agents that 
migrate to each host independently, where k is the number 
of agent servers.  Data fusion is then performed after all 
hosts are visited and all query results are collected. 

 

As an example of independent data, an agent that 
carries out a “sum” operation can do so by collecting 
inputs from a host and storing each value in some type of 
data collection.  When the agent returns home, the values 
stored in the collection are added together to complete the 
operation. The multi-hop data state of the agent in this 
example depends on previous executions of the agent only 
in the sense that contents of the set of collected data must 



 

be carried forward faithfully from the previous host.  In 
this case, truncations, insertions, and deletions are carried 
out by malicious hosts who modify the “values” that are 
carried by the agent.  Data is considered independent 
because the code logic computes new data state by 
incrementally adding new results to the protected area of 
an agent.  Data fusion or sorting is, again, conducted after 
all server results are collected.  

 

In some agent applications, the computational result 
of the agent at state dx is dependent on the computation 
result of the previous agent states {d1 .. dx-1}.  Figure 1, 
letter <D> indicates the path of a multi-hop agent as it 
traverses a network, migrating from host to host carrying 
out computations.  A multi-hop bidding agent can be 
designed to carry all of the bids for each host visited in its 
state and apply logic to determine the winner once all 
possible hosts are visited (thus utilizing independent 
data).  The bidding agent can also be designed to carry the 
amount and identity of the lowest bidder in its state, 
which is updated along the way as the agent visits each 
host (dependent data).   
 

In the context of our “sum” example, an agent with 
dependent data would only carry a sum variable that is 
updated by the input of each host in its route.  The agent 
returns home with the sum calculated from the last host 
that it visited.  Independent data is also referred to as data 
aggregation because a correlation exists between the 
previous and current execution state of the agent.   
 

3.2   Multiple Agents with Independent Data 
 

We present an architecture based on the interaction 
of three different classes of agents: task agents, data 
computation agents, and data collection agents. The task 
agent embodies the job an originating host wants to 
perform, such as a user’s desire to purchase an airline 
ticket with a fixed set of criteria. Task agents spawn either 
a single multi-hop agent or multiple numbers of single-
hop agents to perform computations in the form of 
information gathering or bid requests. Task agents spawn 
one or more computation agents with either fixed or free-
roaming itineraries that visit host servers in a specific 
subject domain (such as airline reservation systems) and 
perform queries based on user criteria.  Computation 
agents traverse the same route of a typical mobile agent 
and need to be uniquely identifiable to prevent the replay 
attacks expounded in [9].  As figure 2 illustrates, a task 
agent can remain at the originating host or be transferred 
to a trusted third party where computation agents are then 
spawned.  
 

The agent framework in our architecture must be 
equipped with a data service, referred to as a data bin, 
which stores encapsulated data states of agents. These 
bins are similar to other notions of data lockers [21] or 
services that provide agent data safekeeping on trusted 
third party servers.  Data bins have both a public part, 
where computation and collection agents can store and 

retrieve results, and a private part, where host-originating 
task agents can store partial results for later fusion. In 
independent data operations, computation agents do not 
arrive back at the originating hosts with a state payload 
containing a protected set of results.   Instead, the 
computation agent leaves the result of its execution 
(embodied in the mutable state or as a query result) on 
each host via the public data bin service, protected with 
some form of agreed upon encryption scheme.   Figure 2 
depicts the spawning of the computation agent (a) that 
would visit hosts h1, h2, h3, and h4 with multi-hop 
migrations of {a1,a2,a3,a4,a5}.   

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For greater fault tolerance, computation agents 
themselves can be launched in replicated mode as 
described in [15].  In either case, each computational 
result is linked to the identity of the agent and the identity 
of the originating host for later pickup.  Data results can 
also be encapsulated using approaches such as [4,5,6,7].  
At worst, a malicious host can only induce denial of 
service to the computation agent or only keep its own 
independent data result from being gathered by a 
collection agent.  Authenticity and non-repudiability is 
achievable by binding the identification of the originating 
host and the unique agent identifier together with the 
agent data state.  If the agent is single-hop, no data state is 
left and the agent returns to the originating host carrying 
the data state, as in remote evaluation operations [22].   
 

Data collection agents are responsible for the single-
hop mission of carrying back encapsulated data states or 
query results to the originating host.  Figure 3 illustrates 
the activity of data collection agents that were spawned as 
a result of the activity of task agent (t) and its subsequent 
computation agent (a) seen in Figure 2.  Each data 
collection agent (a,b,c,d in figure 3) stores its payload in 
the private data bin of the originating host and notifies the 
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Figure 2: Activity of Task and Computation Agent

t

Public Data Bin 
[ result of a-h1 ]  

Public Data Bin
[ result of a-h2 ] 

 

Public Data Bin 
[ result of a-h4 ]  

 

a

a1 

a2 

a3

a4
a5 

h4 

 
Task  
Agent 

 
Computation 

Agent 

Public Data Bin
 

 

Private Data Bin 

Private Data Bin 

h2

Private Data Bin 

h1 

Private Data Bin 

Private Data Bin 

Public Data Bin
 

 
Private Data Bin 

TTP
t



 

task agent of its arrival.  In this aspect, data bins would 
provide private holding areas for data results that support 
information fusion of task agents that originate from that 
host as well as public holding areas where results of 
visiting agents are stored and are available for pickup.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data collection agents are executed in one of three 
different configurations:  1) server-based response mode; 
2) host-based request mode; and 3) autonomous data 
collection mode.  In server-based response mode, each 
server visited by a computation agent spawns a data 
collection agent that performs an authenticated and 
encrypted single-hop transfer of the result (seen in figure 
3).  In the host-based request mode, the originating host 
sends data collection agents to each host that was part of 
the itinerary of the computation agent.   The task agent 
does this in response to the completion of the computation 
agent.  The autonomous data collection mode is a method 
where single-hop data collection agents are spawned 
either by a host that has just launched task agents or by 
agent servers who send results to trusted third party 
collection points on a recurring time interval.  This 
approach is similar to a “garbage collection” service that 
runs in the background of a JAVA interpreter.  With this 
method, data collection is built as a routine service that 
interfaces data bins with executing agent hosts.  

 

Design of data collection protocols must ensure that 
only the originating host can retrieve its own data results, 
or in some altered form, that an agent can request 
previous data results for fusion at locations where a 
trusted computing environment is guarenteed. After all 
data collection activities have been accomplished and the 
task agent collates and filters results, it can spawn further 
computation agents that perform single-hop transactions 
or additional data gathering.  In such cases where a 
single-hop transaction like a credit card billing is 
accomplished, no data collection is required.  To 

summarize, all three classes of agents within our 
architecture are used in various combinations to 
accomplish a user task.   

 

3.3 Multiple Agents with Dependent Data 
 

Our proposed architecture relies on the general 
premise that agent computations should be separated from 
data state collection when a multi-hop agent is used.  The 
static code of the computation agent has to interact with 
partial results of previous computations in order to 
produce a new data state result. To perform a multi-hop 
task that relies on dependent data, the data computation 
agent is modified to carry only the most recent state as its 
payload, while leaving a secured encrypted copy of its 
current state at each host server.  Data collection agents in 
this configuration serve the role of a verification authority 
because the final data state of the agent can be compared 
against the incremental data states that are retrievable by 
collection activities.  Detection of truncation violations is 
supported in this mode but not absolutely prevented when 
multiple colluding hosts are present. 

 

Data aggregation implemented in this manner gives 
more freedom for using multi-hop agent logic. This 
architectural variation also resembles execution tracing 
proposed by Vigna in [22], but communications with the 
host in our scheme are meant to verify integrity of data 
(versus code execution) and are also automated (versus 
ad-hoc). The underlying data collection architecture itself 
can be used to incorporate or support other security 
measures such as execution tracing and data 
encapsulation [4,5,7].   

 

3.4  Fault Tolerance and Security Issues 
 

There are several fault tolerance issues that need to 
be addressed in our approach, just as in other schemes.  
For example, when storage space is exceeded in data bin 
services, some form of queue management is 
implemented (much like routers discard packets under 
certain load conditions).  One or more trusted third parties 
can be used for data collection activities or task agent 
hosting (instead of the originating host) to allow for 
disconnected host operations.  Timeout of task agents that 
must wait for results of both the computation agent and 
the data collection agents can be mitigated by providing 
time-based services that determine when agents have been 
unreasonably detained or diverted. 

 

As with any multi-agent or mobile agent system, 
recovery from errors when messages are not delivered or 
when migration is not possible needs to be addressed.  
Failure of data bin services would require an alternative 
or default data storage service in the network if the host 
facility becomes unavailable.  Failure of the original task 
agent, failure of one or more computation agents, and 
failure of data collection agents can be mitigated by such 
approaches as the shadow model of [14]. Other work on 
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fault-tolerance such as [12,13,15] provide approaches to 
mitigate host failures and malicious activity. 

 

Denial of service or random alterations of the code 
are not preventable  because the agent server has ultimate 
power over an agent by having access to executable code 
and updatable state—though such activity can be 
detectable.  When multi-hop agents with dependent 
(aggregated) data are used, the ability to mask or guard 
the function itself is needed to protect the computation 
agent against smart alterations of the code. We are 
currently researching other means to accomplish this 
aspect of agent protection [24] and plan to incorporate 
future results in consideration of multi-hop migrations.   
We also do not address the ability to keep keys used by 
both the computation and collection agent private, though 
it is an important issue with planned future research along 
the lines of work such as [25,26].   

 

3.5 Performance 
 

In most cases, adding security to a system always 
comes with a cost.  Multiple interacting agents do bring 
more complexity and performance overhead to a system 
and the added benefits of security or fault tolerance has to 
be weighed against the increased communications costs.  
Performance issues boil down to the difference between a 
normal multi-hop agent that carries results with it and 
returns back to an originating host versus a static task 
agent that spawns one or more computation agents and 
receives responses from one or more collection agents.    

 

A traditional migrating mobile agent that visits k 
servers would make k+1 migrations (see figure 1).  The 
size of such an agent grows linearly according to the 
added data state and the size of the resulting query.  When 
dependent data is designed into the agent logic, described 
earlier, the agent data state may not grow appreciably at 
all.  For our architecture, there is now the overhead of 
single static task agent (present on the originating host or 
a trusted third party) and a computation agent that makes 
k+1 migrations (assuming a multi-hop traversal).  At least 
k additional data collection agents must now make 
communication with data bin services and provide 
transport of results back to the host.  The impact of 
doubling network transmission (2k + 1) and the increased 
consumption of resources due to the interaction of these 
three agent classes will be the subject of our continued 
future research. 

 

4   CONCLUSION 
 

Enforcing strong data integrity is the goal of many 
agent system schemes. We propose a multi-agent 
architecture for preventing data integrity attacks against 
mobile agents, especially truncations in the presence of 
multiple colluding hosts.  Though the idea of 
communicating agent state to the originating host has 
been proposed previously, our architecture formalizes this 
approach in three classes of cooperating multiple agents 

and introduces the notion of a data bin service to facilitate 
data computation and collection activities.   
 

     We feel this approach offers several security benefits: 
 

• It limits the impact any one agent platform can 
have on another 

• No platform can influence previous 
computations during execution of the 
computation agent 

• Impacting future computations in a multi-hop 
computation would require smart code alteration, 
which is the subject of other research in [24]  

• Integrity attacks are reduced to denial of service 
 

     We rely on the assertion that results of an agent 
computation must be carried back at some point to an 
originating host.  It is the exposure of these incremental 
results to possibly malicious hosts that motivates 
separation of data computation activities from data 
collection activities. Whether it is in the form of a 
modified agent state or as a combination of results that are 
embedded in a collection of agent state values, the agent 
either carries this set of data states within it or the state 
can be left at an agent platform and delivered by another, 
more secure, means.  

 

The multi-agent approach also allows applications to 
be developed in a conceptual manner by leveraging the 
concept of agency while still providing a strong bound on 
data integrity and prevention of malicious host activity. 
The novelty of distinguishing between data computation 
and data collection to support data integrity in mobile 
agents will also provide continued avenues for future 
research and analysis.   
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