

Mobile Agent Data Integrity Using Multi-agent Architecture*

J. Todd McDonald**
Dept of Computer Science

Florida State University
Tallahassee, FL 32306-4530, USA

mcdonald@cs.fsu.edu

Alec Yasinsac
 Dept of Computer Science

Florida State University
Tallahassee, FL 32306-4530, USA

yasinsac@cs.fsu.edu

Willard C. Thompson III

Dept of Computer Science
Florida State University

Tallahassee, FL 32306-4530, USA
wthompso@cs.fsu.edu

Abstract

Protection of agent data state and partial results in
mobile agent systems continues to draw research interest.
Current solutions to integrity attacks are geared at
detection of malicious activity a posteriori. We propose
multi-agent architecture that uses cooperating multi-hop
and single-hop agents to prevent such attacks and discuss
security features of our scheme. We also examine data
protection services and the means for collecting agent
data state in this context.

Key Words: mobile agents, security, data integrity,
partial result protection

1 INTRODUCTION

Mobile agents are a method for implementing
distributed systems and an emerging abstraction for
architectural program design. Unresolved security issues
continue to be cited among other reasons why mobile
agents have not achieved widespread implementation [1].
Research continues to formulate mechanisms that secure
the computational state of mobile agents in the presence
of malicious hosts. Protecting an agent consists of two
primary features: protecting the static executable code of
an agent from disclosure or alteration and protecting the
dynamic state of the agent as it incrementally changes
during execution. We focus on the protection of the
intermediate data results an agent gathers as it migrates
through a network.

Agent data protection is concerned with keeping the
state of an agent safe from observation (confidentiality) or
keeping it safe from alteration (integrity) by malicious
hosts. Integrity violations are typically only detectable
after the agent returns to its origination, when it reaches
an honest host in the itinerary, or when it stores partial
results with a trusted third party. Our proposed
architecture supports prevention of integrity violations
(without data aggregation) and detection of these
violations (with data aggregation) by using multiple
cooperating agents to accomplish user tasks.

Essentially, we distinguish between the tasks of data
computation and data collection, and assign these tasks to
different classes of cooperating agents. This architecture
provides security features ideal for protection against
classical data integrity attacks such as insertion, deletion,
and alteration of intermediate results. The novelty of our

approach is in part the formalization of using different
classes of agents to perform information computation and
gathering. Essentially, our scheme relies on three
cooperating types of agents: some agents performing
computations, some managing tasks, and other agents
carrying computational results back to the originating
host.

The rest of the paper is outlined as follows. In
section 2, we provide background and review existing
literature. In section 3, we introduce separation of agent
data computation from agent data collection and outline
our approach to integrity of data using multi-agent
architecture. Section 4 provides conclusions and a
discussion of benefits and issues related to our approach.

2 RELATED WORK

Mobile agents are sent to gather information and
perform tasks on behalf of a user, migrating to the source
of information and reducing network bandwidth of
messages required to process data. An agent is seen as a
migrating program that has both a static part (code) and a
dynamic state (data). Each host execution can be said to
add new information progressively to the data state of an
agent. Initial work in mobile agents such as [2] identified
two modes of information gathering: stateless and
stateful. In a stateless approach, agents can intermittently
or at every hop send information acquired back home to
the originator. In a stateful mode, the agent embodies in
its data state the results of each host execution and carries
with it a growing collection of information to each
subsequent host in its itinerary. In this regard, we
formalize in our architecture a mechanism by which both
stateless and stateful integrity protection mechanisms can
be incorporated into mobile agent interactions with the
use of multiple classes of agents.

The use of multiple agents and transfer of partial
results for safekeeping during agent migration are
considered in other works as well. Roth in [3] proposed
that an agent could transfer commitments to another
cooperating agent that can verify and store the
information gathered. In [3], agents are sent to disjoint
sets of hosts and in turn can send each other commitments
of current hosts via a host-provided secure
communications channel. This provides a level of non-
repudiation and requires a malicious host to corrupt other
hosts that are on the co-operating agent’s future itinerary.

*This material is based upon work supported in part by the U.S. Army
Research Laboratory and the U.S. Army Research Office under grant
number DAAD19-02-1-0235
SIT

**The views expressed in this article are those of the author and do not
reflect the official policy or position of the United States Air Force,

Department of Defense, or the U.S. Government
SIT

2.1 Partial Result Protection

Chained encapsulated results [4], partial result
authentication codes [5], per-server digital signatures [5],
append-only containers [6], and sliding encryption [7] are
all examples of solutions from early mobile agent
research that provide various levels of intermediate result
protection. These frameworks use digital signatures,
encryption, and hash functions in different combinations
of chained relationships to provide detection and
verification services. With these techniques, the
originating host or an honest host in the path of an agent
can identify when previous servers have inserted,
truncated, or changed information from previous
intermediate results carried by the agent. Loureiro et al.
proposed a subsequent protocol in [8] that would allow a
server to update its previous offer or bid. Roth has noted
in [9] that many of these protocols suffer from replay and
oracle attacks because they do not bind the dynamically
collected data of an agent to its static code.

When malicious hosts collude, these protocols are
weaker in detecting activity in the face of cooperating
hosts that share secrets and information to change
intermediate host results. Specifically, truncations are
defined as integrity attacks where the data state of an
agent is restored back to a state computed at a host that
was previously visited in the itinerary. With the use of
dynamically determined loose itineraries [3], detection of
truncation attacks is difficult if not impossible in certain
cases.

Vijil and Iyer in [10] augmented the append-only
container of [6] with a means to detect mutual collusion
and actually identify which hosts performed the
tampering. Other recent work describes weaknesses of
several protocols where truncations cannot be detected in
certain cases. Maggi and Sisto in [11] provided a formal
definition to describe protocol interactions in several
different data protection mechanisms. In particular, they
note that implementation of stronger forms of truncation
resilience need to be implemented. Our notion for multi-
agent architecture that separates data computation and
data collection into different agent classes and services is
inspired by this quest.

2.2 Multiple Agents/Fault Tolerance and Security

We propose to use multiple classes of agents that are
given similar duties of either information computation or
data gathering. The use of multiple agents is also part of
the domain of fault tolerance, which seeks to provide
guarantees on agent migration and task completion.
Extensive work has already been done with integrating
and providing fault tolerance in mobile agent systems [12,
13, 14]. Minsky et al. in [15] proposed that replicated
agents and voting could be used to decide if malicious
hosts have altered agent execution. Yee proposed a
mechanism to detect replay attacks in [16] while Tan and

Moreau extend an execution tracing framework in [17] to
prevent denial of service attacks. In terms of multiple
agents, Tate and Xu utilize multiple parallel agents that
employ threshold cryptography to eliminate the need for a
trusted third party in [18]. Tate and Xu also noted their
work was one of the first to consider multi-agent settings
on the basis of their security benefits. With our approach,
we continue to analyze multiple agent architectures in
mobile contexts on the basis of their security advantages.

A distinction exists between using the same agent
logic replicated multiple times [15, 18] and using different
agents to accomplish a single purpose-driven task [2],
which our scheme utilizes. Work such as [19] has also
tried to determine whether the use of multiple static
agents is better than the use of multiple mobile agents
from a performance perspective. Kotzanikolaou et al. in
[20] presented architecture where a master agent and a set
of multiple slave agents are used together to conduct
electronic transactions. In [20], slave agents are mobile
and travel to only one particular host to negotiate, but
cannot complete a transaction without returning to the
master agent. Our approach is similar in the sense that we
conceptualize a master task agent that spawns and directs
information gathering from multiple computation and
collection agents, and then carries out any transaction
logic separately.

2.3 Data Collection Services

Our architecture also uses data bins that allow an
agent to leave computational results in an encrypted,
retrievable form. Data lockers in [21] are described as a
service provided for mobile users that keeps their data in
secure and safe locations part of a fixed network. Our
notion of a data bin is similar in that we envision a data
service where intermediate results of agent computations
can be safely stored during the transit of an agent through
a network. Our approach is motivated by the security
properties that a data bin offers instead of convenience or
accessibility that is associated with a data locker.

3 MULTI-AGENT DATA INTEGRITY

The simplest method of preventing data integrity
attacks is to not put partial or intermediate results in the
hands of potential malicious servers. Reducing exposure
or eliminating exposure of partial results all together is
the essential idea behind our architecture. Specifically,
we envision three different classes of agents: task agents,
computation agents, and data collection agents. The task
agent is responsible for the overall job a user wants to
perform. Computation agents replicate in a fault-tolerant,
single-hop manner or can be embodied in a single multi-
hop agent to perform required computations. Data
collection agents are responsible for providing ad-hoc or
continuous data state collection. In essence, computation
agents interact with hosts, under the direction of a master
task agent, and leave partial results on the server where

h0

…

h1 h2

d1 d2

d3

dk

{d1}

Figure 1: Single and Multi-Hop Agent Interactions

{d1, d2}

{d1, d2, d3}
{d1, d2, d3, …, dk}

D’ = {d’1, d’2, d’3, …, d’k} <C>

<D>

<A>

hk h3

they are produced via the use of a data bin service.
Collection agents are assigned the task of gathering and
returning intermediate results to the master task agent that
can then filter and make decisions based upon predefined
criteria.

Our work involves prevention of manipulation,
extraction, and truncation of information accumulated by
an agent in a multi-hop free-roaming scenario. We do not
address denial of service by a malicious host nor attempt
to analyze whether a server has provided false
information to the agent. We do not address privacy of
execution (the knowability of a given function) or
integrity of execution in terms of random code
modifications. We assume that alterations to the static
agent code are detectable by honest hosts when measures
such as code signatures [5, 18] or execution tracing [22]
are employed. We also assume that a public key
infrastructure is in place or at a minimum the ability to
distributed shared secrets among participants of the
mobile agent system.

Various methods exist in the literature for formally
describing the interaction of an agent with a host [8, 11,
18] and each sets forth data privacy characteristics that
various protocols support. As illustrated in figure 1, an
agent’s execution can be described by the set of hosts that
it visits, {h1, h2, …, hk} and the associated set of data D,
{d1, d2, …, dk}, that represents the incremental change in
state of the agent as it visits each host and performs its
task. This view of agent data interactions is part of the
traditional idea of a competitive, electronic transaction
application of mobile agents where bids or offers are
collected by agents in various contexts, such as airline
reservation [2, 4, 5, 23].

As shown in [11], this set of data can be described as
being either a sequenced or unordered collection of the
relevant computational results gathered by the agent as it
traverses its itinerary and performs its task. Each host

inserts a new result into the protected area of an agent in a
manner that links the result to the previous results and/or
the next host to be visited. Assuming that the originating
host is h0, the agent’s path could also be described as the
set {h0, h1, h2, …, hk,h0}. When an agent arrives back at
its originating host, with task accomplished, the set of
data results D’, {d`1, d2, …, d`k`}, will represent the
incremental changes in state of the agent as it migrates
around the network. Figure 1 illustrates how the data set
of a migrating agent essentially grows as each host
executes the agent code, adding a data state to the
protected area of a migrating agent.

The set D’, indicated by figure 1, letter ,
indicates what the agent does have on arrival back at its
originating host and set D, indicated by figure 1, letter
<A>, indicates the set of data results it should have. The
highest level of protection that can be achieved is known
as strong data integrity and is defined as the ability to
detect whether set D, {d1, d2, …, dk} ≠ set D’, {d`1, d’2,
…, d`k`} on return of the agent to the originating host.
Strong data integrity would also include detection of all
truncation attacks, which is still not possible in all cases
when colluding hosts are involved.

3.1 Independent and Dependent Agent Data

Independent data can be viewed as a collection of
offers, bids, or results that are used by an agent to perform
some type of decision based on those gathered results.
Independent data is seen in a single-hop agent (also
referred to as remote code execution [22]) that migrates to
a remote host, performs its operation, and then either
sends its result back to the home platform or migrates
back to the home platform carrying the result. In other
words, the “result” of the agent is independent from the
“result” gathered on any other host platform where the
same computation is carried out.

When an agent migrates from host to host
performing such a query or computation in a multi-hop
mode, results of the current host are appended to previous
results that are also carried by the agent. Figure 1, letter
<C>, illustrates migration paths of an agent that uses
single-hop logic, returning to the originating host after
each execution. This type of computation can be
performed by one single agent that makes k roundtrip
migrations in a single-hop manner or by k agents that
migrate to each host independently, where k is the number
of agent servers. Data fusion is then performed after all
hosts are visited and all query results are collected.

As an example of independent data, an agent that
carries out a “sum” operation can do so by collecting
inputs from a host and storing each value in some type of
data collection. When the agent returns home, the values
stored in the collection are added together to complete the
operation. The multi-hop data state of the agent in this
example depends on previous executions of the agent only
in the sense that contents of the set of collected data must

be carried forward faithfully from the previous host. In
this case, truncations, insertions, and deletions are carried
out by malicious hosts who modify the “values” that are
carried by the agent. Data is considered independent
because the code logic computes new data state by
incrementally adding new results to the protected area of
an agent. Data fusion or sorting is, again, conducted after
all server results are collected.

In some agent applications, the computational result
of the agent at state dx is dependent on the computation
result of the previous agent states {d1 .. dx-1}. Figure 1,
letter <D> indicates the path of a multi-hop agent as it
traverses a network, migrating from host to host carrying
out computations. A multi-hop bidding agent can be
designed to carry all of the bids for each host visited in its
state and apply logic to determine the winner once all
possible hosts are visited (thus utilizing independent
data). The bidding agent can also be designed to carry the
amount and identity of the lowest bidder in its state,
which is updated along the way as the agent visits each
host (dependent data).

In the context of our “sum” example, an agent with
dependent data would only carry a sum variable that is
updated by the input of each host in its route. The agent
returns home with the sum calculated from the last host
that it visited. Independent data is also referred to as data
aggregation because a correlation exists between the
previous and current execution state of the agent.

3.2 Multiple Agents with Independent Data

We present an architecture based on the interaction
of three different classes of agents: task agents, data
computation agents, and data collection agents. The task
agent embodies the job an originating host wants to
perform, such as a user’s desire to purchase an airline
ticket with a fixed set of criteria. Task agents spawn either
a single multi-hop agent or multiple numbers of single-
hop agents to perform computations in the form of
information gathering or bid requests. Task agents spawn
one or more computation agents with either fixed or free-
roaming itineraries that visit host servers in a specific
subject domain (such as airline reservation systems) and
perform queries based on user criteria. Computation
agents traverse the same route of a typical mobile agent
and need to be uniquely identifiable to prevent the replay
attacks expounded in [9]. As figure 2 illustrates, a task
agent can remain at the originating host or be transferred
to a trusted third party where computation agents are then
spawned.

The agent framework in our architecture must be
equipped with a data service, referred to as a data bin,
which stores encapsulated data states of agents. These
bins are similar to other notions of data lockers [21] or
services that provide agent data safekeeping on trusted
third party servers. Data bins have both a public part,
where computation and collection agents can store and

retrieve results, and a private part, where host-originating
task agents can store partial results for later fusion. In
independent data operations, computation agents do not
arrive back at the originating hosts with a state payload
containing a protected set of results. Instead, the
computation agent leaves the result of its execution
(embodied in the mutable state or as a query result) on
each host via the public data bin service, protected with
some form of agreed upon encryption scheme. Figure 2
depicts the spawning of the computation agent (a) that
would visit hosts h1, h2, h3, and h4 with multi-hop
migrations of {a1,a2,a3,a4,a5}.

For greater fault tolerance, computation agents
themselves can be launched in replicated mode as
described in [15]. In either case, each computational
result is linked to the identity of the agent and the identity
of the originating host for later pickup. Data results can
also be encapsulated using approaches such as [4,5,6,7].
At worst, a malicious host can only induce denial of
service to the computation agent or only keep its own
independent data result from being gathered by a
collection agent. Authenticity and non-repudiability is
achievable by binding the identification of the originating
host and the unique agent identifier together with the
agent data state. If the agent is single-hop, no data state is
left and the agent returns to the originating host carrying
the data state, as in remote evaluation operations [22].

Data collection agents are responsible for the single-
hop mission of carrying back encapsulated data states or
query results to the originating host. Figure 3 illustrates
the activity of data collection agents that were spawned as
a result of the activity of task agent (t) and its subsequent
computation agent (a) seen in Figure 2. Each data
collection agent (a,b,c,d in figure 3) stores its payload in
the private data bin of the originating host and notifies the

Public Data Bin
[result of a-h3]

h0

h3

Figure 2: Activity of Task and Computation Agent

t

Public Data Bin
[result of a-h1]

Public Data Bin
[result of a-h2]

Public Data Bin
[result of a-h4]

a

a1

a2

a3

a4
a5

h4

Task
Agent

Computation

Agent

Public Data Bin

Private Data Bin

Private Data Bin

h2

Private Data Bin

h1

Private Data Bin

Private Data Bin

Public Data Bin

Private Data Bin

TTP
t

task agent of its arrival. In this aspect, data bins would
provide private holding areas for data results that support
information fusion of task agents that originate from that
host as well as public holding areas where results of
visiting agents are stored and are available for pickup.

Data collection agents are executed in one of three
different configurations: 1) server-based response mode;
2) host-based request mode; and 3) autonomous data
collection mode. In server-based response mode, each
server visited by a computation agent spawns a data
collection agent that performs an authenticated and
encrypted single-hop transfer of the result (seen in figure
3). In the host-based request mode, the originating host
sends data collection agents to each host that was part of
the itinerary of the computation agent. The task agent
does this in response to the completion of the computation
agent. The autonomous data collection mode is a method
where single-hop data collection agents are spawned
either by a host that has just launched task agents or by
agent servers who send results to trusted third party
collection points on a recurring time interval. This
approach is similar to a “garbage collection” service that
runs in the background of a JAVA interpreter. With this
method, data collection is built as a routine service that
interfaces data bins with executing agent hosts.

Design of data collection protocols must ensure that
only the originating host can retrieve its own data results,
or in some altered form, that an agent can request
previous data results for fusion at locations where a
trusted computing environment is guarenteed. After all
data collection activities have been accomplished and the
task agent collates and filters results, it can spawn further
computation agents that perform single-hop transactions
or additional data gathering. In such cases where a
single-hop transaction like a credit card billing is
accomplished, no data collection is required. To

summarize, all three classes of agents within our
architecture are used in various combinations to
accomplish a user task.

3.3 Multiple Agents with Dependent Data

Our proposed architecture relies on the general
premise that agent computations should be separated from
data state collection when a multi-hop agent is used. The
static code of the computation agent has to interact with
partial results of previous computations in order to
produce a new data state result. To perform a multi-hop
task that relies on dependent data, the data computation
agent is modified to carry only the most recent state as its
payload, while leaving a secured encrypted copy of its
current state at each host server. Data collection agents in
this configuration serve the role of a verification authority
because the final data state of the agent can be compared
against the incremental data states that are retrievable by
collection activities. Detection of truncation violations is
supported in this mode but not absolutely prevented when
multiple colluding hosts are present.

Data aggregation implemented in this manner gives
more freedom for using multi-hop agent logic. This
architectural variation also resembles execution tracing
proposed by Vigna in [22], but communications with the
host in our scheme are meant to verify integrity of data
(versus code execution) and are also automated (versus
ad-hoc). The underlying data collection architecture itself
can be used to incorporate or support other security
measures such as execution tracing and data
encapsulation [4,5,7].

3.4 Fault Tolerance and Security Issues

There are several fault tolerance issues that need to
be addressed in our approach, just as in other schemes.
For example, when storage space is exceeded in data bin
services, some form of queue management is
implemented (much like routers discard packets under
certain load conditions). One or more trusted third parties
can be used for data collection activities or task agent
hosting (instead of the originating host) to allow for
disconnected host operations. Timeout of task agents that
must wait for results of both the computation agent and
the data collection agents can be mitigated by providing
time-based services that determine when agents have been
unreasonably detained or diverted.

As with any multi-agent or mobile agent system,
recovery from errors when messages are not delivered or
when migration is not possible needs to be addressed.
Failure of data bin services would require an alternative
or default data storage service in the network if the host
facility becomes unavailable. Failure of the original task
agent, failure of one or more computation agents, and
failure of data collection agents can be mitigated by such
approaches as the shadow model of [14]. Other work on

Task
Agent

Figure 3: Activity of Data Collection Agents

Public Data Bin

h0

h3

t

Public Data Bin

Public Data Bin

Public Data Bin

b
a1

d1

h4

Public Data Bin

Private Data Bin

Private Data Bin h2

Private Data Bin

h1

Private Data Bin

Private Data Bin
[result of a-h1]
[result of a-h2]
[result of a-h3]
[result of a-h4]

c1

b1
a

Data Collection

Agents

c
d

fault-tolerance such as [12,13,15] provide approaches to
mitigate host failures and malicious activity.

Denial of service or random alterations of the code
are not preventable because the agent server has ultimate
power over an agent by having access to executable code
and updatable state—though such activity can be
detectable. When multi-hop agents with dependent
(aggregated) data are used, the ability to mask or guard
the function itself is needed to protect the computation
agent against smart alterations of the code. We are
currently researching other means to accomplish this
aspect of agent protection [24] and plan to incorporate
future results in consideration of multi-hop migrations.
We also do not address the ability to keep keys used by
both the computation and collection agent private, though
it is an important issue with planned future research along
the lines of work such as [25,26].

3.5 Performance

In most cases, adding security to a system always
comes with a cost. Multiple interacting agents do bring
more complexity and performance overhead to a system
and the added benefits of security or fault tolerance has to
be weighed against the increased communications costs.
Performance issues boil down to the difference between a
normal multi-hop agent that carries results with it and
returns back to an originating host versus a static task
agent that spawns one or more computation agents and
receives responses from one or more collection agents.

A traditional migrating mobile agent that visits k
servers would make k+1 migrations (see figure 1). The
size of such an agent grows linearly according to the
added data state and the size of the resulting query. When
dependent data is designed into the agent logic, described
earlier, the agent data state may not grow appreciably at
all. For our architecture, there is now the overhead of
single static task agent (present on the originating host or
a trusted third party) and a computation agent that makes
k+1 migrations (assuming a multi-hop traversal). At least
k additional data collection agents must now make
communication with data bin services and provide
transport of results back to the host. The impact of
doubling network transmission (2k + 1) and the increased
consumption of resources due to the interaction of these
three agent classes will be the subject of our continued
future research.

4 CONCLUSION

Enforcing strong data integrity is the goal of many
agent system schemes. We propose a multi-agent
architecture for preventing data integrity attacks against
mobile agents, especially truncations in the presence of
multiple colluding hosts. Though the idea of
communicating agent state to the originating host has
been proposed previously, our architecture formalizes this
approach in three classes of cooperating multiple agents

and introduces the notion of a data bin service to facilitate
data computation and collection activities.

 We feel this approach offers several security benefits:

• It limits the impact any one agent platform can
have on another

• No platform can influence previous
computations during execution of the
computation agent

• Impacting future computations in a multi-hop
computation would require smart code alteration,
which is the subject of other research in [24]

• Integrity attacks are reduced to denial of service

 We rely on the assertion that results of an agent
computation must be carried back at some point to an
originating host. It is the exposure of these incremental
results to possibly malicious hosts that motivates
separation of data computation activities from data
collection activities. Whether it is in the form of a
modified agent state or as a combination of results that are
embedded in a collection of agent state values, the agent
either carries this set of data states within it or the state
can be left at an agent platform and delivered by another,
more secure, means.

The multi-agent approach also allows applications to
be developed in a conceptual manner by leveraging the
concept of agency while still providing a strong bound on
data integrity and prevention of malicious host activity.
The novelty of distinguishing between data computation
and data collection to support data integrity in mobile
agents will also provide continued avenues for future
research and analysis.

5 REFERENCES

[1] G. Vigna, “Mobile Agents: Ten Reasons For Failure,”
Proceedings of MDM 2004, pp. 298-299 Berkeley, CA
January 2004.

[2] D.M. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris,
and G. Tsudik, “Itinerant Agents for Mobile Computing,”
Journal IEEE Personal Communications, vol. 2, no. 5, pp.
34-49, October 1995.

[3] V. Roth, “Mutual protection of co--operating agents,” in J.
Vitek and C. Jensen, editors, Secure Internet
Programming: Security Issues for Mobile and Distributed
Objects, LNCS 1603, New York, NY, USA: Springer-
Verlag, pp. 275-285, 1999.

[4] G. Karjoth, N. Asokan and C. Gulcu, “Protecting the
computation results of freeroaming agents,” in K.
Rothermel and F. Hohl, editors, Proc. of the Second
International Workshop, Mobile Agents 98, LNCS 1477,
Springer-Verlag, pp. 195-207, 1998.

[5] B. Yee, “A sanctuary for mobile agents,” in J. Vitek and
C. Jensen, editors, Secure Internet Programming, volume
1603 in LNCS, pp. 261–274, New York, NY, USA, 1999.
Springer-Verlag Inc.

[6] N. M. Karnik and A. R. Tripathi, “A security architecture
for mobile agents in Ajanta,” in Proceedings of 20th
International Conference on Distributed Computing

Systems, pp. 402–409, IEEE Computer Society Press,
2000.

[7] A. Young and M. Yung, “Sliding Encryption: A
Cryptographic Tool for mobile agents,” in Proceedings of
the 4th International Workshop on Fast Software
Encryption, FSE ’97. January 1997.

[8] S. Loureiro, R. Molva, and A. Pannetrat, “Secure Data
Collection with Updates,” in Electronic Commerce
Research Journal, 1/2:119-130, February/March 2001.

[9] V. Roth, “Empowering mobile software agents,” in Proc.
6th IEEE Mobile Agents Conference, LNCS Volume
2535, pages 47–63. Spinger Verlag, 2002.

[10] E.C. Vijil and S Iyer, “Identifying collusions: Co-operating
malicious hosts in mobile agent itineraries,” in K.Fischer
and D. Hutter, editors, Proc. of 2nd Intl. Workshop on
Security of Mobile MultiAgent Systems (SEMAS'2002),
Bologna, Italy, July 2002.

[11] P. Maggi and R. Sisto, “A Configurable Mobile Agent
Data Protection Protocol,” in Proc. of the 2nd Int. Joint
Conference on Autonomous Agents and Multiagent
Systems (AAMAS'03), 2003.

[12] F. Schneider, “Towards fault tolerant and secure agentry,”
in Proc. of the 11th Int. Worskhop on Distributed
Algorithms, LNCS 1320, Springer-Verlag, Berlin
Germany, 1997.

[13] H. Vogler, T. Hunklemann and M. Moschgath, “An
Approach for Mobile Agent Security and Fault Tolerance
Using Distributed Transactions,” in Proc. International
Conference on Parallel and Distributed Systems
(ICPADS’97), pp.268-274, Seoul, December 1997.

[14] S. Pears, J. Xu, and C. Boldyreff, “A Dynamic Shadow
Approach for Mobile Agents to Survive Crash Failures,”
Sixth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC'03), pp. 113-
120 ,Hakodate, Hokkaido, Japan, May 14 - 16, 2003.

[15] Y. Minsky, R. Renesse, F.B. Schneider, and S.D Stoller,
“Cryptographic Support for Fault-Tolerant Distributed
Computing,” in Proceedings of the Seventh ACM SIGOPS
European Workshop, pp. 109-114, Connemara, Ireland,
September 1996.

[16] B. Yee, “Monotonicity and Partial Results Protection for
Mobile Agents,” in Proceedings of 23rd International
Conference on Distributed Computing Systems,
Providence, Rhode Island, May, 2003.

[17] H. Kim Tan, L. Moreau, “Extending execution tracing for
mobile code security,” in Fischer, K. and Hutter, D., Eds.
Proc. of 2nd Intl Workshop on Security of Mobile
MultiAgent Systems (SEMAS'2002), pages pp. 51-59,
Bologna, Italy, July 2002. s Conference (NAECON),
Dayton, OH, October 10-12, 2000.

[18] S.R. Tate and K. Xu, “Mobile Agent Security Through
Multi-Agent Cryptographic Protocols,” in Proceedings of
the 4th International Conference on Internet Computing
(IC 2003), pp. 462-468, 2003.

[19] S. O'Malley, A. Self, and S. DeLoach, “Comparing
Performance of Static versus Mobile Multiagent Systems,”
in Proceedings of the National Aerospace and Electronics
Conference (NAECON) Dayton, OH, October 10-12, IEEE
Press, pp. 282-289, 2000.

[20] P. Kotzanikolaou, G. Katsirelos, and V. Chrissikopoulos,
“Mobile agents for secure electronic transactions,” in N.
Mastorakis, editor, Recent Advances in Signal Processing
Communications, World Scientific Engineering Society,
pp. 363-368, 1999.

[21] Y. Villate, A. Illarramendi, and E. Pitoura, “Data Lockers:
Mobile-Agent Based Middleware for the Security and
Availability of Roaming Users Data,” in the 7th
International Conference on Cooperative Information
Systems (CoopIS 2000), Eilat, Israel, September 6-8, 2000,
LNCS 1901, pp 275-286, Springer, 2000.

[22] G. Vigna, “Cryptographic traces for mobile agents,” in G.
Vigna, editor, Mobile Agents and Security, LNCS 1419,
Springer-Verlag, June 1998.

[23] J. Claessens, B. Preneel and J. Vandewalle, “(How) can
mobile agents do secure electronic transactions on
untrusted hosts? – A survey of the security issues and the
current solutions,” ACM Transactions on Internet
Technology. February 2003.

[24] W. Thompson, A. Yasinsac, J. McDonald. “Semantic
Encryption Transformation Scheme,” to appear in Proc. of
2004 International Workshop on Security in Parallel and
Distributed Systems, San Francisco, CA, September 15-17,
2004.

[25] S. Chow, P. Eisen, H. Johnson and P.C. van Oorschot,
“White-Box Cryptography and an AES Implementation”,
Proceedings of the Ninth Workshop on Selected Areas in
Cryptography (SAC 2002).

[26] S. Chow, P. Eisen, H. Johnson and P.C. van Oorschot, “A
White-Box DES Implementation for DRM Applications”,
Proceedings of 2ndwork ACM Workshop on Digital
Rights Management (DRM 2002), November 2002.

