

AGENT-BASED ARCHITECTURE FOR

MODELING AND SIMULATION INTEGRATION

J. TODD McDONALDv, MICHAEL L. TALBERTw

vAir Force Operational Test and Evaluation Center, HQ AFOTEC, Kirtland AFB, New Mexico 87117,
USA, todd.mcdonald@afotec.af.mil

wAir Force Institute of Technology, AFIT/ENG, WPAFB, Ohio 45433, USA, michael.talbert@afit.af.mil

Abstract. The Department of Defense (DOD) has an extensive family of models used to digitally simulate
the mission level interactions of weapon systems. Interoperability and reuse of the underlying data files
used to create simulation scenarios are of particular interest to the modeling community. We develop an
architecture to support simulation interoperability by combining three key technologies: object-oriented
data modeling, an underlying persistence mechanism, and an agent-oriented analysis and design
methodology. We use object-oriented modeling techniques to encapsulate and organize the syntactic
information contained in scenario database files while we examine the semantic information of these
objects for data integration purposes. The agent architecture provides a communication capability to
support collaborative development and information brokering. We demonstrate our architecture by means
of prototypical applications that implement the foundational information agent layer.

Key Words. Agents, Simulation Reuse, Model Integration, AOIS, SUPPRESSOR, MSFD, JIMM

1. INTRODUCTION

The Air Force1 Research Laboratory (AFRL) is
directing an effort to provide a collaborative
computing environment to support simulation
scenario reuse and integration. The requirements of
this collaborative environment, known as
CERTCORT (Concurrent Engineering for Real
Time databases CORrelation Tool), and its
heterogeneous data integration problem are
represented pictorially in Figure 1. We describe an
agent-based architecture that incorporates object-
oriented data modeling techniques (OMT), semantic
information modeling, and persistent database
technology to accomplish legacy scenario data
integration and reuse while providing traceability to
authoritative data sources in an automated fashion.
We use concepts and techniques from the emerging
field of agent-oriented information systems (AOIS)
[1,2,3] to provide a framework for application
development and an agent-centric lifecycle

1 The views expressed in this article are those of the authors and do
not reflect the views of the United States Air Force, the Department
of Defense, or the U.S. Government.

methodology known as MaSE (Multi-agent Systems
Engineering) [4].

Figure 1: Heterogeneous Database Problem Domain

2. PROBLEM DOMAIN

Player-oriented military simulation models include
among others the Extended Air Defense Simulation
Model (EADSIM), the Suppressor Composite Mission
Simulation System (SUPPRESSOR), the Joint Interim
Mission Model (JIMM), and the Simulated Warfare

Proceedings of the National Aerospace & Electronics
Conference (NAECON 2000)
Dayton, Ohio, USA 10-12 October, 2000

MSFD

DTED

EWIR

CONOPS

CIB

DFAD

DOCUMENTS

C
E
R
T
C
O
R
T

SUPPRESSOR

JIMM/SWEG

MOSAIC

EADSIM

CEESIM

RISS

DEES

Authoritative
Data

Sources Simulation
Model
Types

Integrate any
Authoritative Data Source
(provide traceability)

Into Any
Simulation

Model

Reuse Scenarios of One Model
in any other Simulation Model

Environment Generator (SWEG). Two primary goals
exist for integration and legacy scenario reuse within
this realm. The first goal rests on the assumption that
all models are based on some underlying real-world
interaction. In terms of the aforementioned player-
level simulations, authoritative data represents the real-
world performance characteristics of both weapon
systems and the human interaction required to use
them.

The traceability of authoritative sources to their
corresponding scenario representation is currently lost
without manual correlation. Authoritative sources also
come in widely different formats (syntactic
representation) and with varying degrees of
information (semantic content). A major goal of the
CERTCORT effort is to provide automated correlation
for simulation analysts as new scenarios are developed.
Figure 2 pictorially represents a Multi-Spectral Force
Deployment (MSFD) data file (an intelligence source
detailing unit subordination relationship) and how it
provides traceability to simulation specific instructions
found in both a SUPPRESSOR and EADSIM scenario.

Figure 2: Source-to-Model Traceability

The second form of integration deals with reuse across
simulation models themselves. This is where entities
described in a model-specific grammar (such as
SUPPRESSOR) are desired for reuse in another model-
specific grammar (such as JIMM). It also describes
direct translation of an entire scenario into a different
model, while retaining the same weapons, tactics, and
operations of the original scenario. This level of
integration typically requires the translation of various
data items from one simulation specific grammar to
another. Such effort requires in-depth knowledge of
both simulations and a manual error-prone method of
subjective translation by an analyst.

Player-level simulations tend to have a “player” or
“platform” definition that generically describes all
possible systems from aircraft, naval, land, and space

vehicles. As such, simulations vary in their ability to
model terrain, communication, zones, and
electromagnetic effects; likewise, scenario description
languages (referred to as “grammars”) vary in their
resolution ability to capture such concepts.

Because grammars follow a pre-defined format, object-
oriented modeling is well suited for analyzing and
describing the contents of a given scenario. As such,
objects encapsulate the text -based nature of scenario
data files in a hierarchical manner. We use the term
“syntactic” object model to mean a faithful
representation of the grammar structure of a
simulation. Likewise, the term “semantic” object
model refers to associations, classes, and inheritance
relationships derived from a syntactic model that
provide higher levels of abstraction. Human analysts
can work and conceive of scenarios in semantic terms
much more easily than in the scenario-specific syntax
of a grammar. It is this expert-knowledge of a
simulation grammar that makes translation from model
to model difficult, time consuming, and subjective.
Figure 3 illustrates the concept of model-to-model
translation in terms of abstractions. Integration can
occur from a purely “syntactic” understanding of a
scenario or from a more information-based method that
relies on the reuse of “semantic” objects closer to real-
world abstractions.

Figure 3: Model-to-Model Integration

We develop an architecture that supports integration of
both authoritative source data to a family of simulation
models (Figure 2) and a model-to-model integration
(Figure 3) that allows an automated approach to
scenario construction. Traditional data-centric
approaches to model integration try to find schematic
structures of a textual nature that are common to
models within a given domain. Reuse is seen in terms
of mapping schematic structures into a global schema

SUPPRESSOR
Scenario

Database Files

MSFD

SUPPRESSOR
Scenario

EADSIM
Scenario

Database Files

EADSIM
Scenario

MSFD
Representation

Model X
Logical Objects

Semantic Translation

Model Y
Logical Objects

Syntactic Translation

Model X Scenario
Data Files

(based on grammar)

Model Y Scenario
Data Files

(based on grammar)

that provides the necessary translation from one model
to another. We describe an approach to translation
based upon common semantic objects that are found
from information discovery techniques performed on
underlying scenario data files. Objects play a key role
in our understanding of ontology and our particular
heterogeneous data integration strategy. Their role is
briefly discussed next.

3. OBJECT-ORIENTED FOUNDATION

The information systems view of our architecture is not
seen in terms of “how” or “where” scenario data is
stored. Instead, a collection of “information agents” is
seen to actively encapsulate scenario information that
finds its source in flat-file, relational, or object-based
formats. Agents perform the task of translating
scenario and authoritative data sources into the
common data model of our architecture: objects. In
this sense, both the ontological definition and meaning
of data within our system is seen in terms of objects
used to encapsulate files and simulation grammars.
The derivation of an object model is obtained by
applying traditional object-oriented data modeling
techniques (OMT) to the grammar definition and
format definitions of simulation models and source
authoritative data. Figure 4 illustrates the
encapsulation process for a set of SUPPRESSOR
scenario data files. The object representation of a
grammar is referred to as the “syntactic” model while
other derivable object models are seen as “semantic”
views of this syntax model.

Figure 4: Object Encapsulation of Scenario Files

The object-oriented syntax models for both scenario
database files and authoritative data sources can serve
various purposes in our architecture. Once in an
objectified form, methods can be derived for
information visualization purposes, text translation
(XML, HTML), persistent object creation, or
appropriate conversion to other simulation object
structures. Figure 5 illustrates this concept.

Figure 5: Translation Possibilities for Scenario Object

Semantic object models are derived based on analyst
requirements and domain specific needs for
information reuse and integration. For example,
command chain relationships among players of a
scenario are common to many simulation models. The
SUPPRESSOR model has particular grammar data
items that convey rudimentary subordination
relationships. However, the syntactic representation of
this data does not capture the parent/subordination
relationship necessary for representing this information
in a real world or semantically appropriate way. Post-
processing of the scenario instance data must occur in
order to create additional associations, inheritance
chains, and classes that express the parent/subordinate
relationship (as seen in Figure 6). In this sense,
methods built into the object model can be used to
post-process these object bundles to create
semantically appropriate information.

Likewise, the MSFD data file (a traceable authoritative
source) also contains subordination information of
forces modeled in a scenario. The MSFD is record
oriented and its syntactic object class representation is
a simple aggregation of record classes with multiple
attributes. The actual command chain information is

PLAYERS
 bomber
TACTICS
 bomber _tactics
ELEMENTS
 bomber_ele
SUSCEPTIBILITIES
 bomber_sig
MOVERS
 bomber _body
SENSOR-RECEIVERS
 bomber _radar_rx
. .

UAN

TDB

SDB

EDB

Semantic
Object

Model derived
from Syntax

Model

Definition of “BOMBER” according to the
SUPPRESSSOR TDB grammar rules

“Closer To”
Real World

Abstractions

SUPPRESSOR
Grammar

Abstractions

“FLAT-FILE” DATA

GRAMMAR RULE
ANALYSIS

Syntactic
Object

Model of
SUPPRESSOR

grammar

Scenario description
according to

SUPPRESSSOR
UAN grammar rules

SUPPRESSOR
Scenario
Object

SWEG
Scenario

Files
SWEG

Scenario
Object

EADSIM
Scenario
Object

Persistent
SUPPRESSOR

Object
(OODBMS)

SUPPRESSOR
XML

Representation

SUPPRESSOR
Scenario

Files
(Text)

Java SWING
Tree Representation

Derived from
SUPPRESSOR

Scenario Data Files

OR

A Store Persistent
SUPPRESSOR Object

retrieved from an
OODBMS

Full Scenario Translation Possibilities

Information Visualization

Conversion Possibilities
Text/HTML/SGML/Persistence

Side

name : String
isNeutral : boolean

CommandChain

name : String

1..*1..*

Player

1..*1..*

players

1..*1..*

hierarchy

1

0..*

1

parent

0..*

0..*

subordinates

0..*

MSFD Data File

S U P P R E S S O R
Scenario Database

Fi les (TDB/SDB/UAN)

PlayerStructure

Capability

Susceptibility

Tactic

EDB TDB

1..*1..*

1 . . *1 . . *

1 . . *1 . . *

1 . . *1 . . *

A D B D M A
M o d e l E x e c u t i o n

N e t

S i d e

S D B

0..*0..*

n e t s

1 . . *1 . . *

s i d e s

Zone
0 . . *0 . . *

sha redZones

SuppressorSim

n a m e : S t r i n g
c l a s s i f i c a t i o n : S t r i n g
dataDi rect ive : in t = SAVE_DATA
$ S A V E _ D A T A : i n t = 1

UAN

S t r i n g
(f r o m l a n g)

UanCategory

UanDefinition

1..*1..*

uanDefs

1..*1..*

u a n N a m e s

u a n C a t e g o r y

Semantic Object Model
(Command Chain Hierarchy)

Semantic Object Model
(Command Chain Hierarchy)

ChainNationalTheater

Ms fdCha ins

0. .*0. .*

nationalTheaterChains

MSFD

1..*1. .*

commandChains

M s f d R e c o r d

1 . . *1 . . *
records

MsfdCommandChain

1

1

1

1

record

0..*
subord inates

0..*

0. .1
parent

0. .1

C h a i n A r m y C o r p s

Cha inArmyGroup

Cha inCompanyBa t te ry

ChainDiv is iona lNode

ChainRegimenta lBr igade

ChainBat ta l ion

Parse Methods

MsfdGateway

DecodePair
code : String
value : String

MsfdHq

MsfdSubordinate
1..*1..*

s u b o r d i n a t e s

MsfdChains

C h a i n N a t i o n a l T h e a t e r
0..*0..*

na t i ona lThea te rCha ins

MSFD

0..10..1

userInterface

1..*1..*

h q S u b C h a i n s

1..*1..*c o m m a n d C h a i n s

String Uni tSubord ina t ionCode

1..*1..*

unitDefinitionCodes

1 . . *1 . . *

subordinationCodes

MsfdRecord

1..*1..*

records

1..*1..*
t i m e F r a m e s

1..*1..*
usc

MsfdCommandChain

1

1

1

1r e c o r d
0..* s u b o r d i n a t e s0..*

0 . . 1

parent

0 . . 1

C h a i n A r m y C o r p s

ChainArmyGroup

ChainCompanyBattery

ChainDivisionalNode

ChainNaionalTheater

ChainRegimentalBrigade

Flat Fi le Data Sources

Simulation Scenario Files

Authoritative Source Data

Syntactic Object Instances

Semantic Object Instances

Post-Processing Methods

Correlation and
Reuse of

Semantically
Appropriate

Abstractions:

Both semantic models
have parent/subordinate

associat ions
and

classes
that descr ibe
subordination

relationship

Syntactic Object Model
MSFD Object

Syntactic Object Model
SUPPRESSOR Objec t

not derivable from this syntax model apart from
instance data and some form of complicated post-
processing. Once this post-processing is accomplished
(as depicted in Figure 6), the subordination information
in terms of parent and subordinate units can now be
expressed in a more semantically appropriate manner.

As seen in the semantic model for MSFD command
hierarchy, there are six different levels of subordination
involving national, corps, divisional, company,
battalion, regimental, and group placement. Even
though the SUPPRESSOR model only conveys two
levels of subordination (i.e., parent and subordinate),
there is an appropriate mapping from these two
particular semantic object models that can be derived.
Other semantic models can be derived from a
simulation’s syntax model based on the information

visualization need of an analyst or the information
content discovery need of an information retrieval (IR)
system. The result of applying OO modeling
techniques to simulation grammars and scenario input
files forms foundational objects by which
encapsulation and further data integration can be
accomplished. The goal, of course, is to exploit to the
fullest extent possible the energy spent in deriving the
object model for a given simulation model type or data
input.

In previous work [5], the SUPPRESSOR syntactic
object model was fully elaborated along with the
MSFD syntactic object model. For demonstration
purposes, the command chain hierarchy was chosen as
a suitable semantic model in which integration and
reuse could be accomplished. We further propose a

Figure 6: Authoritative-Source-to-Simulation-Scenario Semantic Integration

model-to-model integration approach based on a
common semantic object model. This concept, though
not fully developed in past research, is based on the
need to provide legacy integration of pre-existing
scenarios that are written in various simulation models.

Theoretically, the modeled aspects of any given
weapon system or player interaction can be described
as a correlating function between a data item (or set of
data items) found in a simulation grammar with a
particular real-world weapon characteristic that is
being modeled. This function can provide the
necessary basis and mapping for data items in a
simulation grammar into a generic semantic object
model that captures the information content. Figure 7
expresses this mapping function in a way that shows
correlation of the data item elements of a “bomber”
player as defined in the SUPPRESSOR grammar to
their equivalent representation in a generic semantic
object model. This syntax-to-semantic conversation is

accomplished by some function, f(x), which is currently
not defined. This function is based on the valid
assumption that a many-to-many relationship exists

between grammar data items and the real-world
attributes or characteristics of a weapon system they
are defining. The derivation of f(x) and the
construction of the semantic object model are left for
future research.

In the same manner, a correlating function g(f(x)) can
also be found from a given populated instance of a
generic semantic object model that represents weapon
systems and characteristics back to some different
model, which in particular belongs to the CERTCORT
domain. Figure 7 demonstrates how a simulation entity
like a bomber can be defined in a SUPPRESSOR
model and integrated and reused in a JIMM scenario
using the concept of a common semantic object model.
Our approach differs from traditional heterogeneous
database approaches in that the underlying data files
are seen more in the context of an information retrieval
system than they are as schematic representations of
some underlying database. Semantic modeling is used

to expose this underlying information content found in
these representative documents while the syntax model

GenericSystem

GenericVehicle

GenericAircraft

GenericBomber

bomber-a

A Class Hierarchy
with real-world,

semantically
appropriate
attributes

?
f(x)

mapping from
simulation

specific data
item to real

world concept
part of a
generic

semantic model

?
g(f(x))

mapping from
real world
concept in

generic
semantic model
to simulation
specific data

item

MODEL A (SUPPRESSOR)

Specific Grammar Definition
of a “BOMBER” Player

MODEL B (JIMM?)

Specific Grammar Definition
of a “BOMBER” Player

“bomber”

Figure 7: Model-to-Model Semantic Integration Concept

preserves the closest representation back to an
underlying flat-file or relational data source.

Though we use models and authoritative data sources
part of the CERTCORT domain as representative
examples for applying our data modeling approach,
these techniques can be applied in general to the larger
body of simulations and models that are within DOD.
In this sense, the achievements of our research show
benefit for other simulation and modeling communities
to include operational and educational war-gaming and
one-on-one and campaign level models. These models
and the construction of scenarios executed in them
have similar problems of interoperability and reuse as
well. Our research uses objects as natural
encapsulations of complex data. These objects have
inherent strength for separating data from the
processing requirements of that data. Information
visualization and information discovery are achieved
by adding appropriate post-processing methods on data
read from different sources (relational, object, or flat-
file). Our submitted work [6] elaborates fully the
concept of information bundling in terms of syntactic
and semantic object modeling along with how object-
oriented database technology is incorporated into our
architecture.

Our approach to a distributed collaborative architecture
based on agent-oriented information systems (AOIS)
holds promise for the general field of DOD simulation
and modeling as well. In addition to looking at data
integration in terms of derived semantic views, we also
take a lifecycle approach to this problem domain by
incorporating an agent-oriented system design
methodology known as MaSE [4,7]. By applying
agent-oriented analysis to this problem domain, we
map requirements for scenario construction and
integration into agent based layers that directly
translate from design into implementation. The
application of MaSE to a subset of the CERTCORT
requirements is detailed fully in our original research
[5] and summarized in [7]. The applicability of agent
architecture to our problem domain is discussed next.

4. AGENT ARCHITECTURE

Agents are a relatively new paradigm introduced over
the last decade. We view the term “agents” both in
terms of a programming paradigm that offers higher
level abstractions above objects and as autonomous
entities that have active properties. Multi-agent
systems, in particular, require explicit definition of
communication (known as conversations) and the
specification of message elements between agents that
achieve common goals. As such, agents can be defined

as objects with goals and a common communication
language [4].

Our research uses the agent concept as a natural
abstraction that can capture active requirements of a
system. In this sense, the communication ability
provided by the agent-architecture and the
encapsulation of information as objects represented by
information agents within our system replaces the
traditional concept of data access in an application
framework. The use of persistence mechanisms for
objects is a natural extension to our architecture that
remains supported yet orthogonal to our application
development paradigm [6, 7]. We implement
functionality by classes of agents known as layers.
Three layers are initially conceived for our
architecture: the information layer, collaboration layer,
and assistance layer. Each layer contains one or more
types of agents whose goals and function have been
directly distilled from CERTCORT requirements via
the MaSE methodology. Figure 8 conceptually shows
these basic layers.

Figure 8: CERTCORT Agent Layers

The information layer can be seen as four different
types of agents that collectively handle the data
storage, processing, and sharing requirements of our
system. Distributed or localized information agents
thus encapsulate and represent the information content
of underlying data sources within this layer, which in
our case can be authoritative sources or simulation
scenario data stores. The information is represented to
other agents in the system using serialized objects
embedded in a standard agent communication protocol.
Our agent communication language (ACL) is based
upon Knowledge Query Manipulation Language
(KQML) structures familiar to the realm of agent

INFORMATION
BROKER

SEMANTIC
BROKER

INFORMATION
PROVIDER

INFORMATION
REQUESTOR

SCENARIO
BUILDER

ASSISTANT

COLLABORATION
ASSISTANT

Collaboration Layer

Assistant Layer

Information Layer

technology. Figure 9 illustrates how information
agents in our system represent the content of scenario
data files (SUPPRESSOR/SWEG) and authoritative
data files (MSFD). The figure also illustrates how
object instances can be retrieved from an OODBMS
where persistent instances have been previously
created and stored.

CERTCORT requirements involve the automation and
correlation of source data into respective scenarios and
the automated construction of new scenarios using
intelligent assistance. Current scenario construction
can only be done manually by one analyst at a time,
with a desired goal to allow collaborative development
that automatically validates and fuses scenario data to
avoid conflicts or errors. The collaborative assistance
layer and the intelligent assistance layer (Figure 8)
represent agents that incorporate these requirements
into our architecture. Though left for future research,
agents are an attractive programming paradigm to
represent these particular problems in goal based plans
that can be distributed across computer resources.

The information layer itself consists of three particular
agent classes that we elaborate for implementation and
demonstration purposes. Figure 10 shows the
relationships of the information provider, information
requestor, and information broker agent classes. This
MaSE diagram also shows the various types of
conversations that support goal directed behavior
among these agent types. Information provider agents
are used to actively encapsulate data sources, which
can be flat-file, relational, or object. Our architecture
reflects the reasoning ability and "active" nature these
providers need to have in order to respond to requests
for information. Cooperative information agents are
based on the traditional notion of information retrieval
(IR) systems where agents search with other agents for
information and respond to queries in a plan-based

manner [2]. Our paradigm is based upon the traditional
notion of one type of middle-agent architecture known
as a matchmaker [8]. This configuration allows IR
capabilities to be added in the future but initially
replaces the traditional data storage services with a
collection of information agents linked by an
information brokering system, which acts as a basis for
information registration and exchange.

Figure 10: Information Layer Agent Specification

In order to introduce agent-oriented principles into the
modeling and simulation problem domain, two
building blocks are needed. An agent-oriented systems
analysis and design technique (such as MaSE) should
be used to break the problem area down from
requirements to design on into its implementation as an
agent hierarchy. This technique may be similar to
normal object-oriented design methodologies, but
should be definitively agent-centric and not object-
centric. Second, a multi-agent development
environment is needed to implement and build the
communication requirements of agents specified by the
agent-oriented methodology. We use a customized
agent framework known as agentMom to implement
our agent classes in the Java programming language.

We used a representative simulation (SUPPRESSOR)
and a representative authoritative data source (MSFD)
in order to demonstrate the information layer of our
architecture. Future research will work to fully
elaborate the object models of other simulations and
data sources part of the CERTCORT family.
Additional agent layers are envisioned and the
implementation of collaborative and intelligent
assistance is foreseen as natural extensions of this
architecture without change in the underlying
information systems design.

TDB
SDB

IDB
LDB

TDB
SDB

EDB
UAN

Information
Agents

OODBMS

SWEG
Scenario
Data Files

SUPPRESSOR
Scenario Data

Files

SUPPRESSOR
Scenario

SUPPRESSOR
Scenario

SWA
MSFD

Objects
already created

and stored
persistently

Agents
“represent”

object
instances

created by
parsing data

files

Figure 9: Information Agent Data Representation
InformationProvid
er

InformationBroke
r

+client

+server

Register

+client

+server

Unregister

InformationRequest
or

+client+server

RegisterForInf
o

+requestor

+provide
r

RequestInfo

+client
+server

ReturnInfoSourc
e

+client+server Register

+client+server Unregister

NotifyOfDeregistratio
n

+client+server

5. CONCLUSIONS AND DISCUSSION

Agents provide unique benefits to information
integration in the modeling and simulation context
above those provided by traditional heterogeneous
database architectures. For instance, semantic models
in our domain require post-processing of scenario
instance data that exists in the form of syntactic
models. This “active” property of a data source is
handled well by properties information agents provide.
Federated databases as well tend to be “data” centric
and not “application” centric. Multi-agent systems
provide a life cycle approach that can provide direct
traceability of user requirements into system
components and agent classes.

Our architecture also supports a distributed and cross-
platform capability. Though Java facilitates some
degree of cross-platform capability, our agent types can
be distributed across network resources to best match
developer needs and computing power. The three
primary types of information layer applications can be
distributed across different nodes and operating
systems in a network. The information broker,
information provider, and information requestor agent
types function in different “roles” within the
information layer of our agent architecture and in
essence replace traditional data access in a normal IS
paradigm. Communication and information exchange
is handled by Java classes part of the agentMom
framework using Knowledge Query Manipulation
Language (KQML) like syntax. Data in our system
that is encapsulated in object form is shared using the
Java serialization and networking API.

Another key advantage of an AOIS approach to
systems development is that it can keep the “focus” of
system development on the data without binding to a
particular data storage mechanism. Agents in this
sense provide the ability to abstract away the
underlying data representation of information sources
within an information system. The ability to represent
object, relational and flat-file data in a common data
model where reuse and integration can occur is a key
element for successful applications in our problem
domain. The incorporation of both syntactic and
semantic object modeling to our data domain is key to
our data integration approach and represents our
concept of a common ontology.

Finally, agent-based systems can be expanded to
provide greater functionality without drastic
architectural changes. Different “layers” can be
constructed independent and concurrent with other

layers. Intelligent interfaces and the ability to achieve
coordinated plan-based goals are unique to multi-agent
system paradigms in this respect. AOIS also has
expression in terms of both information-gathering
systems and information retrieval systems, though our
implementation does not include them. Future work
involves incorporation of other simulation models and
authoritative sources as well as the development of
additional agent layers.

7. REFERENCES

[1] Petit, M., P. Heymans and P. Schobbens. “Agents
as a Key Concept for Information Systems
Requirements Engineering.” Position paper on AOIS at
CAiSE 99, 1999.

[2] Dignum, F. “Are information agents just an
extension of information systems or a new paradigm?”
Workshop on AOIS at CAiSE 99, 1999.

[3] Wagner, G. “Toward Agent-Oriented Information
Systems .” Technical report, Institute for Information,
University of Leipzig, March 1999.

[4] DeLoach, Scott A. “Multiagent Systems
Engineering: A Methodology and Language for
Designing Agent Systems.” Proceedings of a
Workshop on Agent-Oriented Information Systems
(AOIS’99). 45-57. Seattle, WA. May 1, 1999

[5] McDonald, J. “Agent Based Framework for
Collaborative Engineering Model Development,” MS
Thesis, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, AFIT/GCS/ENG/00M-16,
March 2000.

[6] M. Talbert, McDonald, J., “Legacy Scenario
Information Reusability for Simulation
Interoperability”, submitted to Ninth International
Conference on Information and Knowledge
Management (CIKM), Washington, D.C., Nov 2000.

[7] McDonald, J., M. Talbert, and S. Deloach,
“Heterogeneous Database Integration Using Agent-
Oriented Information Systems”, to Appear in
Proceedings of the International Conference on
Artificial Intelligence ‘2000, Las Vegas, NV, Jun 2000.

[8] Decker, K., M. Williamson and K. Sycara.
“Matchmaking and Brokering.” Technical report, The
Robotics Institute, Carnegie Mellon University (USA),
Pittsburgh, May 16, 1996.

