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Abstract. The Department of Defense (DOD) has an extensive family of models used to digitally simulate 
the mission level interactions of weapon systems.  Interoperability and reuse of the underlying data files 
used to create simulation scenarios are of particular interest to the modeling community. We develop an 
architecture to support simulation interoperability by combining three key technologies: object-oriented 
data modeling, an underlying persistence mechanism, and an agent-oriented analysis and design 
methodology. We use object-oriented modeling techniques to encapsulate and organize the syntactic 
information contained in scenario database files while we examine the semantic information of these 
objects for data integration purposes.  The agent architecture provides a communication capability to 
support collaborative development and information brokering.  We demonstrate our architecture by means 
of prototypical applications that implement the foundational information agent layer. 
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1. INTRODUCTION 
 
The Air Force1 Research Laboratory (AFRL) is 
directing an effort to provide a collaborative 
computing environment to support simulation 
scenario reuse and integration. The requirements of 
this collaborative environment, known as 
CERTCORT (Concurrent Engineering for Real 
Time databases CORrelation Tool), and its 
heterogeneous data integration problem are 
represented pictorially in Figure 1.  We describe an 
agent-based architecture that incorporates object-
oriented data modeling techniques (OMT), semantic 
information modeling, and persistent database 
technology to accomplish legacy scenario data 
integration and reuse while providing traceability to 
authoritative data sources in an automated fashion. 
We use concepts and techniques from the emerging 
field of agent-oriented information systems (AOIS) 
[1,2,3] to provide a framework for application 
development and an agent-centric lifecycle 

                                                                 
1 The views expressed in this article are those of the authors and do 
not reflect the views of the United States Air Force, the Department 
of Defense, or the U.S. Government. 

methodology known as MaSE (Multi-agent Systems 
Engineering) [4].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Heterogeneous Database Problem Domain 
 
 

2. PROBLEM DOMAIN 
  
Player-oriented military simulation models include 
among others the Extended Air Defense Simulation 
Model (EADSIM), the Suppressor Composite Mission 
Simulation System (SUPPRESSOR), the Joint Interim 
Mission Model (JIMM), and the Simulated Warfare 
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Environment Generator (SWEG). Two primary goals 
exist for integration and legacy scenario reuse within 
this realm.  The first goal rests on the assumption that 
all models are based on some underlying real-world 
interaction.  In terms of the aforementioned player-
level simulations, authoritative data represents the real-
world performance characteristics of both weapon 
systems and the human interaction required to use 
them.   
 
The traceability of authoritative sources to their 
corresponding scenario representation is currently lost 
without manual correlation.  Authoritative sources also 
come in widely different formats (syntactic 
representation) and with varying degrees of 
information (semantic content).  A major goal of the 
CERTCORT effort is to provide automated correlation 
for simulation analysts as new scenarios are developed.   
Figure 2 pictorially represents a Multi-Spectral Force 
Deployment (MSFD) data file (an intelligence source 
detailing unit subordination relationship) and how it 
provides traceability to simulation specific instructions 
found in both a SUPPRESSOR and EADSIM scenario. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Source-to-Model Traceability 
 
The second form of integration deals with reuse across 
simulation models themselves.  This is where entities 
described in a model-specific grammar (such as 
SUPPRESSOR) are desired for reuse in another model-
specific grammar (such as JIMM). It also describes 
direct translation of an entire scenario into a different 
model, while retaining the same weapons, tactics, and 
operations of the original scenario. This level of 
integration typically requires the translation of various 
data items from one simulation specific grammar to 
another.  Such effort requires in-depth knowledge of 
both simulations and a manual error-prone method of 
subjective translation by an analyst.  
 
Player-level simulations tend to have a “player” or 
“platform” definition that generically describes all 
possible systems from aircraft, naval, land, and space 

vehicles.  As such, simulations vary in their ability to 
model terrain, communication, zones, and 
electromagnetic effects; likewise, scenario description 
languages (referred to as “grammars”) vary in their 
resolution ability to capture such concepts.   
 
Because grammars follow a pre-defined format, object-
oriented modeling is well suited for analyzing and 
describing the contents of a given scenario.  As such, 
objects encapsulate the text -based nature of scenario 
data files in a hierarchical manner.   We use the term 
“syntactic” object model to mean a faithful 
representation of the grammar structure of a 
simulation.  Likewise, the term “semantic” object 
model refers to associations, classes, and inheritance 
relationships derived from a syntactic model that 
provide higher levels of abstraction.  Human analysts 
can work and conceive of scenarios in semantic terms 
much more easily than in the scenario-specific syntax 
of a grammar.  It is this expert-knowledge of a 
simulation grammar that makes translation from model 
to model difficult, time consuming, and subjective.  
Figure 3 illustrates the concept of model-to-model 
translation in terms of abstractions.  Integration can 
occur from a purely “syntactic” understanding of a 
scenario or from a more information-based method that 
relies on the reuse of “semantic” objects closer to real-
world abstractions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Model-to-Model Integration 
 
We develop an architecture that supports integration of 
both authoritative source data to a family of simulation 
models (Figure 2) and a model-to-model integration 
(Figure 3) that allows an automated approach to 
scenario construction.  Traditional data-centric 
approaches to model integration try to find schematic 
structures of a textual nature that are common to 
models within a given domain.  Reuse is seen in terms 
of mapping schematic structures into a global schema 
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that provides the necessary translation from one model 
to another.  We describe an approach to translation 
based upon common semantic objects that are found 
from information discovery techniques performed on 
underlying scenario data files.  Objects play a key role 
in our understanding of ontology and our particular 
heterogeneous data integration strategy.  Their role is 
briefly discussed next.   
 
 
3. OBJECT-ORIENTED FOUNDATION  
      
The information systems view of our architecture is not 
seen in terms of “how” or “where” scenario data is 
stored.  Instead, a collection of “information agents” is 
seen to actively encapsulate scenario information that 
finds its source in flat-file, relational, or object-based 
formats.  Agents perform the task of translating 
scenario and authoritative data sources into the 
common data model of our architecture: objects.  In 
this sense, both the ontological definition and meaning 
of data within our system is seen in terms of objects 
used to encapsulate files and simulation grammars.  
The derivation of an object model is obtained by 
applying traditional object-oriented data modeling 
techniques (OMT) to the grammar definition and 
format definitions of simulation models and source 
authoritative data.  Figure 4 illustrates the 
encapsulation process for a set of SUPPRESSOR 
scenario data files.  The object representation of a 
grammar is referred to as the “syntactic” model while 
other derivable object models are seen as “semantic” 
views of this syntax model.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Object Encapsulation of Scenario Files 

The object-oriented syntax models for both scenario 
database files and authoritative data sources can serve 
various purposes in our architecture.  Once in an 
objectified form, methods can be derived for 
information visualization purposes, text translation 
(XML, HTML), persistent object creation, or 
appropriate conversion to other simulation object 
structures.  Figure 5 illustrates this concept. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Translation Possibilities for Scenario Object 
 

Semantic object models are derived based on analyst 
requirements and domain specific needs for 
information reuse and integration. For example, 
command chain relationships among players of a 
scenario are common to many simulation models.  The 
SUPPRESSOR model has particular grammar data 
items that convey rudimentary subordination 
relationships.  However, the syntactic representation of 
this data does not capture the parent/subordination 
relationship necessary for representing this information 
in a real world or semantically appropriate way.  Post-
processing of the scenario instance data must occur in 
order to create additional associations, inheritance 
chains, and classes that express the parent/subordinate 
relationship (as seen in Figure 6).  In this sense, 
methods built into the object model can be used to 
post-process these object bundles to create 
semantically appropriate information.   
 
Likewise, the MSFD data file (a traceable authoritative 
source) also contains subordination information of 
forces modeled in a scenario.  The MSFD is record 
oriented and its syntactic object class representation is 
a simple aggregation of record classes with multiple 
attributes.  The actual command chain information is 
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not derivable from this syntax model apart from 
instance data and some form of complicated post-
processing.  Once this post-processing is accomplished 
(as depicted in Figure 6), the subordination information 
in terms of parent and subordinate units can now be 
expressed in a more semantically appropriate manner. 
 
As seen in the semantic model for MSFD command 
hierarchy, there are six different levels of subordination 
involving national, corps, divisional, company, 
battalion, regimental, and group placement.  Even 
though the SUPPRESSOR model only conveys two 
levels of subordination (i.e., parent and subordinate), 
there is an appropriate mapping from these two 
particular semantic object models that can be derived.    
Other semantic models can be derived from a 
simulation’s syntax model based on the information 

visualization need of an analyst or the information 
content discovery need of an information retrieval (IR) 
system. The result of applying OO modeling 
techniques to simulation grammars and scenario input 
files forms foundational objects by which 
encapsulation and further data integration can be 
accomplished.  The goal, of course, is to exploit to the 
fullest extent possible the energy spent in deriving the 
object model for a given simulation model type or data 
input. 
 
In previous work [5], the SUPPRESSOR syntactic 
object model was fully elaborated along with the 
MSFD syntactic object model.  For demonstration 
purposes, the command chain hierarchy was chosen as 
a suitable semantic model in which integration and 
reuse could be accomplished.  We further propose a 

Figure 6: Authoritative-Source-to-Simulation-Scenario Semantic Integration 



model-to-model integration approach based on a 
common semantic object model.  This concept, though 
not fully developed in past research, is based on the 
need to provide legacy integration of pre-existing 
scenarios that are written in various simulation models.   
 
Theoretically, the modeled aspects of any given 
weapon system or player interaction can be described 
as a correlating function between a data item (or set of 
data items) found in a simulation grammar with a 
particular real-world weapon characteristic that is 
being modeled.  This function can provide the 
necessary basis and mapping for data items in a 
simulation grammar into a generic semantic object 
model that captures the information content.  Figure 7 
expresses this mapping function in a way that shows 
correlation of the data item elements of a “bomber” 
player as defined in the SUPPRESSOR grammar to 
their equivalent representation in a generic semantic 
object model.  This syntax-to-semantic conversation is 

accomplished by some function, f(x), which is currently 
not defined.  This function is based on the valid 
assumption that a many-to-many relationship exists 

between grammar data items and the real-world 
attributes or characteristics of a weapon system they 
are defining.  The derivation of f(x) and the 
construction of the semantic object model are left for 
future research. 
 
In the same manner, a correlating function g(f(x)) can 
also be found from a given populated instance of a 
generic semantic object model that represents weapon 
systems and characteristics back to some different 
model, which in particular belongs to the CERTCORT 
domain.  Figure 7 demonstrates how a simulation entity 
like a bomber can be defined in a SUPPRESSOR 
model and integrated and reused in a JIMM scenario 
using the concept of a common semantic object model.  
Our approach differs from traditional heterogeneous 
database approaches in that the underlying data files 
are seen more in the context of an information retrieval 
system than they are as schematic representations of 
some underlying database.  Semantic modeling is used 

to expose this underlying information content found in 
these representative documents while the syntax model 
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preserves the closest representation back to an 
underlying flat-file or relational data source. 
 
Though we use models and authoritative data sources 
part of the CERTCORT domain as representative 
examples for applying our data modeling approach, 
these techniques can be applied in general to the larger 
body of simulations and models that are within DOD.  
In this sense, the achievements of our research show 
benefit for other simulation and modeling communities 
to include operational and educational war-gaming and 
one-on-one and campaign level models.  These models 
and the construction of scenarios executed in them 
have similar problems of interoperability and reuse as 
well. Our research uses objects as natural 
encapsulations of complex data.  These objects have 
inherent strength for separating data from the 
processing requirements of that data.  Information 
visualization and information discovery are achieved 
by adding appropriate post-processing methods on data 
read from different sources (relational, object, or flat-
file).  Our submitted work [6] elaborates fully the 
concept of information bundling in terms of syntactic 
and semantic object modeling along with how object-
oriented database technology is incorporated into our 
architecture. 
 
Our approach to a distributed collaborative architecture 
based on agent-oriented information systems (AOIS) 
holds promise for the general field of DOD simulation 
and modeling as well.  In addition to looking at data 
integration in terms of derived semantic views, we also 
take a lifecycle approach to this problem domain by 
incorporating an agent-oriented system design 
methodology known as MaSE [4,7].  By applying 
agent-oriented analysis to this problem domain, we 
map requirements for scenario construction and 
integration into agent based layers that directly 
translate from design into implementation.  The 
application of MaSE to a subset of the CERTCORT 
requirements is detailed fully in our original research 
[5] and summarized in [7].   The applicability of agent 
architecture to our problem domain is discussed next.  
 
4. AGENT ARCHITECTURE 
  
Agents are a relatively new paradigm introduced over 
the last decade.  We view the term “agents” both in 
terms of a programming paradigm that offers higher 
level abstractions above objects and as autonomous 
entities that have active properties.  Multi-agent 
systems, in particular, require explicit definition of 
communication (known as conversations) and the 
specification of message elements between agents that 
achieve common goals.  As such, agents can be defined 

as objects with goals and a common communication 
language [4]. 
 
Our research uses the agent concept as a natural 
abstraction that can capture active requirements of a 
system.  In this sense, the communication ability 
provided by the agent-architecture and the 
encapsulation of information as objects represented by 
information agents within our system replaces the 
traditional concept of data access in an application 
framework.  The use of persistence mechanisms for 
objects is a natural extension to our architecture that 
remains supported yet orthogonal to our application 
development paradigm [6, 7].  We implement 
functionality by classes of agents known as layers.  
Three layers are initially conceived for our 
architecture: the information layer, collaboration layer, 
and assistance layer.  Each layer contains one or more 
types of agents whose goals and function have been 
directly distilled from CERTCORT requirements via 
the MaSE methodology.  Figure 8 conceptually shows 
these basic layers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: CERTCORT Agent Layers 
 
The information layer can be seen as four different 
types of agents that collectively handle the data 
storage, processing, and sharing requirements of our 
system.  Distributed or localized information agents 
thus encapsulate and represent  the information content 
of underlying data sources within this layer, which in 
our case can be authoritative sources or simulation 
scenario data stores.  The information is represented to 
other agents in the system using serialized objects 
embedded in a standard agent communication protocol.  
Our agent communication language (ACL) is based 
upon Knowledge Query Manipulation Language 
(KQML) structures familiar to the realm of agent 
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technology.  Figure 9 illustrates how information 
agents in our system represent the content of scenario 
data files (SUPPRESSOR/SWEG) and authoritative 
data files (MSFD).  The figure also illustrates how 
object instances can be retrieved from an OODBMS 
where persistent instances have been previously 
created and stored.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CERTCORT requirements involve the automation and 
correlation of source data into respective scenarios and 
the automated construction of new scenarios using 
intelligent assistance.  Current scenario construction 
can only be done manually by one analyst at a time, 
with a desired goal to allow collaborative development  
that automatically validates and fuses scenario data to 
avoid conflicts or errors.  The collaborative assistance 
layer and the intelligent assistance  layer (Figure 8) 
represent agents that incorporate these requirements 
into our architecture.  Though left for future research, 
agents are an attractive programming paradigm to 
represent these particular problems in goal based plans 
that can be distributed across computer resources. 
 
The information layer itself consists of three particular 
agent classes that we elaborate for implementation and 
demonstration purposes.  Figure 10 shows the 
relationships of the information provider, information 
requestor, and information broker agent classes.  This 
MaSE diagram also shows the various types of 
conversations that support goal directed behavior 
among these agent types. Information provider agents 
are used to actively encapsulate data sources, which 
can be flat-file, relational, or object.  Our architecture 
reflects the reasoning ability and "active" nature these 
providers need to have in order to respond to requests 
for information.  Cooperative information agents are 
based on the traditional notion of information retrieval 
(IR) systems where agents search with other agents for 
information and respond to queries in a plan-based 

manner [2]. Our paradigm is based upon the traditional 
notion of one type of middle-agent architecture known 
as a matchmaker [8].  This configuration allows IR 
capabilities to be added in the future but initially 
replaces the traditional data storage services with a 
collection of information agents linked by an 
information brokering system, which acts as a basis for 
information registration and exchange. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Information Layer Agent Specification 
 
In order to introduce agent-oriented principles into the 
modeling and simulation problem domain, two 
building blocks are needed.  An agent-oriented systems 
analysis and design technique (such as MaSE) should 
be used to break the problem area down from 
requirements to design on into its implementation as an 
agent hierarchy.  This technique may be similar to 
normal object-oriented design methodologies, but 
should be definitively agent-centric and not object-
centric.  Second, a multi-agent development 
environment is needed to implement and build the 
communication requirements of agents specified by the 
agent-oriented methodology.  We use a customized 
agent framework known as agentMom to implement 
our agent classes in the Java programming language.  
 
We used a representative simulation (SUPPRESSOR) 
and a representative authoritative data source (MSFD) 
in order to demonstrate the information layer of our 
architecture.  Future research will work to fully 
elaborate the object models of other simulations and 
data sources part of the CERTCORT family.  
Additional agent layers are envisioned and the 
implementation of collaborative and intelligent 
assistance is foreseen as natural extensions of this 
architecture without change in the underlying 
information systems design. 
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5. CONCLUSIONS AND DISCUSSION 
 
Agents provide unique benefits to information 
integration in the modeling and simulation context 
above those provided by traditional heterogeneous 
database architectures.  For instance, semantic models 
in our domain require post-processing of scenario 
instance data that exists in the form of syntactic 
models. This “active” property of a data source is 
handled well by properties information agents provide. 
Federated databases as well tend to be “data” centric 
and not “application” centric. Multi-agent systems 
provide a life cycle approach that can provide direct 
traceability of user requirements into system 
components and agent classes.  
 
Our architecture also supports a distributed and cross-
platform capability.  Though Java facilitates some 
degree of cross-platform capability, our agent types can 
be distributed across network resources to best match 
developer needs and computing power.  The three 
primary types of information layer applications can be 
distributed across different nodes and operating 
systems in a network.  The information broker, 
information provider, and information requestor agent 
types function in different “roles” within the 
information layer of our agent architecture and in 
essence replace traditional data access in a normal IS 
paradigm.  Communication and information exchange 
is handled by Java classes part of the agentMom 
framework using Knowledge Query Manipulation 
Language (KQML) like syntax.  Data in our system 
that is encapsulated in object form is shared using the 
Java serialization and networking API.  
 
Another key advantage of an AOIS approach to 
systems development is that it can keep the “focus” of 
system development on the data without binding to a 
particular data storage mechanism.  Agents in this 
sense provide the ability to abstract away the 
underlying data representation of information sources 
within an information system.   The ability to represent 
object, relational and flat-file data in a common data 
model where reuse and integration can occur is a key 
element for successful applications in our problem 
domain.  The incorporation of both syntactic and 
semantic object modeling to our data domain is key to 
our data integration approach and represents our 
concept of a common ontology.  

 
Finally, agent-based systems can be expanded to 
provide greater functionality without drastic 
architectural changes.  Different “layers” can be 
constructed independent and concurrent with other 

layers.  Intelligent interfaces and the ability to achieve 
coordinated plan-based goals are unique to multi-agent 
system paradigms in this respect.  AOIS also has 
expression in terms of both information-gathering 
systems and information retrieval systems, though our 
implementation does not include them.  Future work 
involves incorporation of other simulation models and 
authoritative sources as well as the development of 
additional agent layers. 
 
7.  REFERENCES  
 
[1] Petit, M., P. Heymans and P. Schobbens. “Agents 
as a Key Concept for Information Systems 
Requirements Engineering.” Position paper on AOIS at 
CAiSE 99, 1999. 
 
[2] Dignum, F. “Are information agents just an 
extension of information systems or a new paradigm?” 
Workshop on AOIS at CAiSE 99, 1999.   
 
[3]   Wagner, G. “Toward Agent-Oriented Information 
Systems .” Technical report, Institute for Information, 
University of Leipzig, March 1999.  
 
[4] DeLoach, Scott A. “Multiagent Systems 
Engineering: A Methodology and Language for 
Designing Agent Systems.”  Proceedings of a 
Workshop on Agent-Oriented Information Systems 
(AOIS’99).  45-57.  Seattle, WA. May 1, 1999 
 
 
[5] McDonald, J.  “Agent Based Framework for 
Collaborative Engineering Model Development,” MS 
Thesis, Air Force Institute of Technology (AU), 
Wright-Patterson AFB, OH, AFIT/GCS/ENG/00M-16, 
March 2000. 
 
[6] M. Talbert, McDonald, J., “Legacy Scenario 
Information Reusability for Simulation 
Interoperability”, submitted to Ninth International 
Conference on Information and Knowledge 
Management (CIKM), Washington, D.C., Nov 2000.  
 
[7] McDonald, J., M. Talbert, and S. Deloach, 
“Heterogeneous Database Integration Using Agent-
Oriented Information Systems”, to Appear in 
Proceedings of the International Conference on 
Artificial Intelligence ‘2000, Las Vegas, NV, Jun 2000.  
 
[8] Decker, K., M. Williamson and K. Sycara. 
“Matchmaking and Brokering.” Technical report, The 
Robotics Institute, Carnegie Mellon University (USA), 
Pittsburgh, May 16, 1996.

 


