
Practical Methods for
Software Security Education

J. Todd McDonald1, Stuart H. Kurkowski1, Richard A. Raines1, Robert W. Bennington1

Department of Electrical and Computer Engineering
Center for Cyberspace Research

Air Force Institute of Technology
Wright Patterson AFB, OH 45433-7765

{jmcdonal, skurkows, rraines}@afit.edu, robert.bennington@wpafb.af.mil

Abstract
The Department of Defense (DoD) has vested interest in protection of application software critical to
national security. As part of a holistic approach to train leaders in diverse aspects of cyber security, the
Air Force Institute of Technology integrates secure software engineering principles throughout its
computer science and cyber operations curricula. We present here a practical approach to teaching
principles of secure software design as manifested through historical course offerings related to secure
software development and actual student exercises that reinforce software security principles.

Keywords: Secure software, software engineering, curriculum development, cyber security education

1. Introduction.1
In December 2001, the U.S. Deputy Under Secretary of Defense (Science and Technology)

launched the Software Protection Initiative (SPI) with the goal of improving the protection of
application software critical to national security. Based on one of the major SPI goals to train and
educate the DoD community, the Air Force Institute of Technology (AFIT) partnered to incorporate
a wide variety of secure software engineering principles into its educational curriculum. AFIT
offers advanced academic degree programs in Computer Science (GCS), Computer Engineering
(GCE), Cyber Operations (GCO), and Electrical Engineering (GE) to a wide variety of DoD and
civilian students. Within the context of such degree programs, we outline in this paper the
implementation of specific curriculum content designed to train current and future leaders in the art
and science of secure software design. We discuss the layout of course material, exercises, and
appropriate labs that allow hands-on learning of specific course objectives related to software
security. We offer our approach to teaching secure coding principles to the greater academic
community as one example of successful hands-on integration within an overall security-centric
academic curriculum.
2. Educational Context.

AFIT currently offers a wide range of elective options for graduate students to fulfill their
requirement for specific degree programs (GCS, GCE, GE, GCO). The software engineering
sequence is one such option that highlights both theoretical and practical aspects of software
development. The necessity of integrating robust programming practices and specific security-
related techniques into software engineering curriculum cannot be understated [1]. Within the
software engineering sequence itself and within various courses related to cyber operations, secure

1 The views expressed in this article are those of the author and do not reflect the official policy or position of the United States Air Force,

Department of Defense, or the U.S. Government

1

software principles find their greatest prominence. We discuss in this paper specifically the content
and design of one of our required software-engineering-sequence courses for our graduate students:
CSCE-526 Secure Software Design and Development.
2.1. Curriculum Goals

Computer and network software is developed at a rapid pace, most often without the application
of software security principles. Additionally, software often contains sensitive information that
“needs” to be protected from reverse engineering. For many AFIT students, follow-on assignments
or possible future career moves will place them in acquisition or technology related jobs within the
DoD where software systems security plays a central role. Based on the DoD-centric view of the
world held by a majority of our students, we see the need to provide curriculum where they may
learn sound security principles that should be incorporated into the software development process.

In CSCE-526, we specifically look at common exploits that uncover fundamental security flaws
in modern software applications. Because of its relevance to critical technologies, we also address
software exploitation based on (malicious) reverse engineering and tampering attacks, addressing
how current tools may implement various anti-tamper techniques. To provide a basis to understand
current security trends and vulnerability assessment techniques, we address topics such as software
security principles, security analysis techniques, buffer overruns, access controls, race conditions,
input validation, network software security, and software protection/anti-tamper technologies. The
ultimate goal is for students to understand the threats to software security, visualize how hackers
exploit poorly written software, and practice how to actually implement countermeasures while
realizing associated limitations.
2.2. Academic Foundations

CSCE-526 currently synthesizes elements from computer networking, operating systems,
computer architecture, cryptography, and computer security. Several texts provide possible
background material on secure coding and software security in general. Though we in no way can
capture all possible texts which are applicable for such a diverse topic range, we do mention here
the historical texts we have found to be beneficial for both academic and practical exploration.

Because of our emphasis on hands-on learning, Howard et al.’s text on the 19 Deadly Sins text
[2] has shown to be useful for mapping vulnerability analysis with laboratory exercises. The book
provides reasonably-sized synopses of major software vulnerabilities along with appropriate
references for further study. The “sins” themselves provide a manageable method for outlining
specific laboratory exercises as well.

In historical offerings, Viega and McGraw’s Building Secure Software [3] has served as an
alternate text for outlining lab material across the course as well as Howard and LeBlanc’s Writing
Secure Code [4]. For supplemental texts, we have also found a wealth of practical examples for
lecture material in The Art of Software Security Assessment [5], Secure Programming w/ Static
Analysis [6], Reversing: Secrets of Reverse Engineering [7], and Exploiting Software: How to
Break Code [8].

In addition to course text books which provide both practical code examples and a framework
for organizing lab material, students in the CSCE-526 course explore current literature and writing
on exploits via a research project and a term paper. Students are expected to research one of the
course topics and provide both in-class presentations and a final report that summarizes their
research efforts. The research project focuses on applying real-world or work-related experience to
one of the course topics, performing a demonstration of tools related to secure coding (static analysis
tools, bug finders, code analyzers, obfuscation tools, reverse engineering tools, disassemblers, decompilers,
etc.), or reviewing a single article or paper from a conference proceeding, book section, journal, technical

2

magazine, or security related website. The term paper itself is broader in scope and requires the student to
explore a wide variety of literature on a related topic to software security, incorporate independent thought
and analysis, and provide a research quality write-up of their findings.
3. Practical Learning Context.

As Figure 1 depicts, the misguided attempt of “little Bobby Tables” to change his grades at
school can be best understood by someone who has actually attempted to perform a SQL injection
attack (which evidently include Bobby’s mother). In order to reinforce material from the course
texts and provide a real framework to understand the concepts included in course lecture material,
we organize CSCE-526 lab work in a synergistic manner to achieve this goal. Our general approach
takes one piece of code (a C program) that has a growing set of functionality. With each lab
assignment, students either begin with or implement a particular piece of code, normally with an
inherent weakness or “lack” of security. Students then attempt to apply a corrective action to the
piece of code in order to address the security vulnerability that is demonstrated. The laboratory
exercised map closely with the course text, and in this case we show how the 19 Sins text may be
easily integrated. After learning and applying specific secure coding practices, students then get to
experiment with anti-tampering products such as obfuscators and digital rights management (DRM)
tools. We discuss next the actual lab exercises.

Figure 1: The Saga of Little Bobby Tables2

3.1. Laboratory Projects

With laboratory projects at the graduate level, there arises a tension between existing student
skills in specific programming languages or environments and the desired course learning
objectives. In the case of software security, the practical application of possible techniques could
literally require skills and understanding in a wide variety of applicable languages and frameworks:
C++, Java, C, C#, SQL, PHP, HTML, CGI, ASP, JavaScript, Perl, Python, JSP, Ruby, AJAX,
XSLT, XML, and Visual Basic (only to name a few?). Of course, real-world exploits are typically
complex and require expert knowledge in the specific software target environment.

For sake of time in the course, we level the playing field for students in accomplishing the
programming-related lab work by limiting their required knowledge to that of C (which as a
language enables some of the most horrific software exploitation possibilities) and the ability to use
a Linux/UNIX development environment via standard GNU C3 and Cygwin4. The Cygwin
environment also provides a seamless ability for students with predominantly Windows-based

2 http://blog.wired.com/monkeybites/2007/10/jokes-for-nerds.html
3 http://gcc.gnu.org/
4 http://www.cygwin.com/

3

computer access to work at home and in a lab-facility environment supported by the school itself.
For exploits that would require a non-C environment (a SQL injection attack for example), the lab
material provides specific non-programming related work that illustrates the exploits described in
lecture and course text books. In some cases, we use specific tools that are provided for the students
in a network-isolated laboratory for class-specific use (the use of some of these tools would alert
standard network-monitoring tools or anti-virus software). Table 1 summarizes the lab work in the
course and the correlation with the 19 Sins text.

Table 1: Lab Summary
 Sin Covered Goals
1 Simple Password Program 1) Write a program: prompt for password, read, compare with a hard-coded version
2 Buffer Overruns

Format String Problems
Integer Overflows

1) Intentionally cause the buffer to overflow; 2) Modify the program to remove the
buffer overflow; 3) Intentionally cause a format string problem; 4) Remove the format
vulnerability
5) Intentionally create an integer overflow problem by declaring an integer variable in
your program, initializing the value of the integer to the max allowable for the compiler
you are using, and then incrementing the integer value until an overflow occurs.
Document what you observe. 6) Fix the overflow

3 SQL Injection
Command Injection

1) Watch a video demonstrating web-based SQL inject vulnerability; 2) Incorporate
provided C code that has a command inject weakness, run, and observe with specific
inputs; 3) Fix the weakness

4 Failing to Handle Errors
Cross-Site Scripting

1) Watch a video demonstrating cross-site attacks; 2) Incorporate C code that fails to
handle a dynamic memory allocation error and then intentionally cause an error,
observing what you see 3) Change the code to handle the error properly

5 Failing to Protect Network
Traffic
Use of Magic URLs

1) Use the Cain and Abel tool and demonstrate how you can crack a POP password (the
students are required to sign up for a free email account or use their existing POP3
server) 2) Find a web site that used a hidden form field to hide the price of an item: print
the source code out and explain it

6 Improper Use of SSL and
TLS
Use of Weak Password-
Based

1) Given a URL, access the web site and report the error message encountered related to
the web site’s certificate 2) Document and use Cain and Abel to search for personal
information and passwords on a local computer

7 Failing to Store/Protect
Data
Information Leakage

1) Use OllyDbg to open a classmate’s executable program: find the memory location of
the breakpoint used to do the password check and the hard coded password; 2) Use nmap
to scan a particular host computer and correctly identify the web server being used

8 Improper File Access
Trusting DNS

1) Modify your current C program so that it prompts the user for a file name in the
current directory, then after reading the file, displays the contents; 2) Create a file in
another directory and document results of attempting to open it from the current
directory; 3) Fix the code so that only files in the current directory are readable 4) Write
up a summary on a famous DNS spoofing incident and how it could have been prevented

9 Race Conditions
Unauthenticated Key
Exchange

1) Run a shell program that demonstrates a race condition and observe its behavior; 2)
Demonstrate how a malicious user can link another file and observe your results 3)
Write up a summary of a case where unauthenticated key exchange resulted in an exploit

10 Cryptographically Strong
RNG
Poor Usability

1) Write a sequence of programs that uses different types of random number generation,
including entropy-based and pseudo-random generators: document observations; 2)
Write up a summary that provides recommendations for specific Air Force computer
systems that would have greater security if usability were considered

We begin the labs with a very simple student-written C program that prompts the user for a
password, reads the password, compares the password to a hard-coded password in the program,
then displays the results of the compare to the user (indicating if the password entered was correct
or not). In the original version, we give no mention of security. Subsequent labs provide specific C
code fragments to incorporate into this program, each of which embodies a vulnerability of interest.
For the programming-specific examples, the students learn to cause or observe the specific

4

5

vulnerability, provide a remedy in code for the vulnerability, and document their learning
experience. For the non-programming-specific cases (where C does not fully provide a good
example space), students typically either use a tool of interest (nmap5, Cain and Abel6) to
demonstrate a vulnerability or they find specific instances of the vulnerability online and report on
their observations.
3.2. Tool Experimentation

To provide overall context for software protection techniques in later labs, students use a variety
of specific protection tools on their fully coded C program and then use debuggers and
disassemblers such as OllyDebug7 and IDAPro8 to observe effects of various tools. In historical
offerings, students have experimented with Arxan’s EnforcIT9, Aladdin’s HASP HL10 (a hardware-
based protection), and Sofpro’s PC GUARD11. In particular, they are given the same task of
locating another classmate’s hardcoded password when specific protection tools are used. They
write-up the results of their observations and provide some analytical discussion on the type of
protection mechanism that is used. We provide the tools in a laboratory environment to facilitate
licensing and usage restrictions. As part of the project basis in the course, we also encourage
students to evaluate and report on open-source or academic obfuscation tools such as University of
Arizona’s SandMark12.
4. Summary

We present here an approach to teaching secure coding principles as part of an overall software
engineering sequence curriculum. We believe that our approach to hands-on application and
analytical understanding of the applicable theory provides one (good) example of practical software
security education. We believe the exercises themselves may prove beneficial to educators desiring
to integrate practical learning techniques into their own course material in the future.

5. Bibliography

[1] A. Yasinsac and J. T. McDonald, “Foundations for Security Aware Software Development Education,” in
Proceedings of the Hawaii International Conference on System Sciences (HICSS'05), January 4-7, 2006.

[2] M. Howard, D. LeBlanc, and J. Viega, 19 Deadly Sins of Software Security, McGraw Hill/Osborne, 2005.
[3] J. Viega and G. McGraw, Building Secure Software: How to Avoid Security Problems the Right Way, Addison-

Wesley Professional Computing Series, 2001.
[4] M. Howard and D. LeBlanc, Writing Secure Code, Second Edition, Microsoft Press, 2002.
[5] M. Dowd, J. McDonald, and J. Schuh, The Art of Software Security Assessment, Pearson Education, 2007.
[6] B. Chess and J. West, Secure Programming w/ Static Analysis, Pearson Education, 2007.
[7] E. Eilam, Reversing: Secrets of Reverse Engineering, Wiley, 2005.
[8] G. Hoglund and G. McGraw, Exploiting Software: How to Break Code, Addison-Wesley Professional, 2004.

5 http://nmap.org/
6 http://www.oxid.it/cain.html
7 http://www.ollydbg.de/
8 http://www.hex-rays.com/idapro/
9 http://www.arxan.com/anti-tamper/EnforcITPlatform.php
10 http://www.aladdin.com/hasp/hasphl.aspx
11 http://www.sofpro.com/pcgw32.htm
12 http://sandmark.cs.arizona.edu/

