Protecting Reprogrammable Hardware with

Polymorphic Circuit Variation*

J. Todd McDonald
Air Force Institute
of Technology
gmedonalQafit. edu

Abstract

Cyperspace is constantly threatened by at-
tackers and malware that focus their attacks
on a set of known vulnerabilities. When a se-
quence of software code or hardware structure
is exposed, it can reveal new vulnerabilities
and weaken embedded protections. Attacks
on existing code sequences or hardware struc-
ture will be less effective if we can provide
sufficient protection. Though software pro-
tection is an open problem with known the-
oretical limits, practitioners seek to find ways
of expressing time or cost metrics induced by
various techniques on malicious reverse engi-
neers and adversarial analysis. In this paper
we consider the nature of circuit transforma-
tion algorithms that operate on programmatic
logic using iterative sequences of probabilis-
tic and deterministic transforms. We consider
such algorithms from the perspective of the
kinds of information relative to circuits we are
interested in hiding or protecting and experi-
mental results along those lines.

1 Introduction

One approach to protecting software or cir-
cuits from reverse engineering is obfusca-
tion: obscuring programmatic logic or orig-
inal source code information so that an ad-
versary may not subvert, copy, or understand
some original version [4]. We observe that

*The views expressed in this article are those of the
authors and do not reflect the official policy or position
of the Unites States Air Force, Department of Defense,
or the U.S. Government

Yong C. Kim
Air Force Institute

of Technology
ykim@afit. edu

Michael R. Grimaila
Air Force Institute
of Technology
mgrimail@Qafit. edu

general programs typically have collections
of straight-line logic (no loops and discrete
input/output relationships) and basic pro-
grams are themselves abstractions of Boolean
primitives [8]. Accordingly, we may repre-
sent an interesting class of programmatic syn-
tax as Boolean logic circuits. We also note
that reprogrammable hardware environments
such as Field Programmable Gate Arrays of-
fer possibility for software-like configuration
in a wide variety of modern embedded sys-
tems. This provides great context for the Cy-
ber realm and gives us motivation to under-
stand the limits of circuit variation because
more and more cryptographic operations and
critical technology now find their way into re-
programmable environments.

Leveraging this correlation, we present in
this paper an experimental environment that
gives insight into the fundamental nature of
whitebox variation where functional seman-
tics of a circuit are preserved. Namely,
at what point does a polymorphic circuit!
variant exhibit a hiding property of inter-
est, or obfuscation? We consider this ques-
tion by analyzing the effect of systematic
and iterative changes (variation) to small
parts of a circuit where we allow large vari-
ability within the design of specific experi-
ments. Such experiments allow us to intro-
duce large numbers of user-driven goals, ran-

1Other established definitions of polymorphism in
virology refer to multifunctional circuits that perform
two or more functions under different conditions. We
use the term polymorphism to highlight the fact that
functionally equivalent circuits have many (poly) dif-
ferent forms or kinds (morph) that are all semantically
interchangeable.

dom/probabilistic choices, and criteria-based
deterministic options. Thus, we can con-
sider end-to-end effects of small syntactic level
changes that manifest not only as whitebox
structural variations, but possibly protection
metrics of interest.

2 Background

As a measure of security, circuit obfuscation
has theoretical boundaries if we desire to pre-
vent all leakage in the information theoretic
sense [1] or if we want to obtain a best possible
alternative [6]. However, if we allow transfor-
mations that change blackbox behavior but
use a recovery function to return the intended
output, other possibilities exist. If we have
small input-size functions, we can combine
canonical minimization and encryption func-
tion composition to fully hide the intent of in-
termediate gate logic [12]; likewise, if we have
circuits with behavior that falls into special
classes such as rational functions, we may use
homomorphic transformation schemes to pro-
vide the hiding [14]. If we limit our measure-
ment scope to specific properties such as side-
channel analysis [9, 20, 15] or topology hiding
[19], several heuristic and theoretical models
come into view as well.

Cohen [3] was one of the first researchers
to link Shannon’s concepts of confusion and
diffusion with programmatic transformations.
Most modern obfuscation algorithms use one
or more of the program evolution techniques
suggested by him: equivalent instruction se-
quences, instruction reordering, variable sub-
stitution, jump addition/removal, call ad-
dition/removal, garbage insertion, program
encoding, redundancy, program interleaving,
and anti-debugger mutations.

More recently, researchers have appealed
to formal software models to express cer-
tain properties related to obfuscation. Term
rewriting systems [2, 16], abstract interpreta-
tion [5, 13], and program encryption [17, 11]
have all been used to analyze and characterize
the effect of structural variation and syntactic
changes. These frameworks may either char-
acterize the difficulty of finding and normaliz-
ing malicious transformations or attempt to

measure the strength of friendly protection
schemes based on variation.

Table 1: RPM Notations

Meaning

Variable

(& A combinational Boolean circuit
! Original circuit C' after ¢ iterations of randomization
c, C. Original circuit C' after n-iteration randomization is finished

Q circult basis. {2 1s a set of Boolean functions such that
2 C {AND, NAND, OR, NOR, XOR, XNOR, NOT}

the class of a cirenit, indicating inputs (X'), outputs (Y),
size (S = maximum number of gates), and basis (€2)

&, dxy_s.q | circuit family, i.e., the set containing all cireuits C'x_y_q.0

de family of cireunits semantically equivalent to C' (d¢ C d)

The hardness of reverse engineering or its
suitability to hide some original program in-
formation is normally linked with unintelligi-
bility or understandability. The use of these
terms has unfortunately not promoted ro-
bust theoretical discussion of actual/practical
obfuscating transformations because intelli-
gence and understandability remain human-
centered concepts. Collberg and his col-
leagues [4] use metrics that in almost all cases
correlate larger size and numbers of artifacts
to the specific cost in time or resources of var-
ious software reverse engineering tasks. We
prefer the ability to measure indistinguishabil-
ity and randomness as more precise since both
terms have context in traditional cryptogra-
phy and information theory. In order to un-
derstand the fundamental/mathematical na-
ture of heuristic-based syntactic transforma-
tions, our experimental environment considers
the effects of large numbers and large classes
of random choices applied to the structural
level of a circuit. As a motivating context,
we probe assertions of one obfuscation defini-
tion known as the random program model [17],
which we review next.

2.1 Notation

In our context, we model programs specifi-
cally as Boolean circuits. A circuit over € is
a directed acyclic graph (DAG) having either
nodes mapping to functions in 2 (referred to
as gates) or having nodes with in-degree 0 be-
ing termed inputs. We also distinguish one
(or more) intermediate nodes as outputs. The
basis is complete if and only if all functions f
are computable by a circuit over 2. The basis

"> c’

[)
Circuit family
[Inputs/Outputs/Size/Q]

Figure 1: Random Program Model (RPM)
[17]

sets {AND, OR, NOT}, {AND, NOT}, {OR,
NOT}, {NAND}, and {NOR} are all known
to be complete. One example of a complete
6-gate basis is Q = {AND, OR, NOR, NAND,
XOR, NXOR} which has basis size |Q2] = 6.
We summarize our notational style in Table
1.

2.2 Randomness as an Obfuscation
Metric

When considering circuits, we typically use
two primary analysis paradigms to describe
them: how they behave and how they are con-
structed. We rightly consider software “be-
havior” as the blackbox functional charac-
teristics (denotational semantics) of a circuit
reflected by all possible input/output pairs
while we can define circuit “construction” as
the representation of its whitebox internal
structure (the collection of language state-
ments that define its topography).

We may define an obfuscating transforma-
tion O(-) as an efficient, terminating program
which takes a circuit C as input and returns
another circuit C": O(C) = C’. Of this asser-
tion, all theoreticians and practitioners (that
we are aware of) would agree. Beyond that,
the majority of theoretical and practical mod-
els for obfuscation have at least two other re-
quirements for the obfuscating program O(-),
where O(C) = C’: semantic equivalence and
security.

e Semantic Equivalence: Vx € {0,1}" :
C(x) = C'(z), where n is the input size
of C and C" = O(C).

e Efficiency: There is a polynomial [such
that for every circuit C, |O(C)| < I(|C)).

e Security: A property that expresses
some notion of information “hiding” or
security guaranteed by O(-) for every pos-
sible circuit under consideration. The ex-
pression and measurement of the prop-
erty varies from model to model: black-
box [1], indistinguishability [1], best-
possible [6].

In [18, 17], a theoretical and practical un-
derstanding of obfuscation based on the ran-
dom program model (RPM) is given. RPM
posits that an intent-protected circuit when
compared with any other circuit randomly
chosen from a similar family (i.e., the same
dx-y-s-q, where C € dx-y-s-q) are indis-
tinguishable as possible variants of the orig-
inal circuit. Figure 1 gives our visual under-
standing of RPM. Intent protection itself is
expressed as adversarial software exploitation
for three main purposes:

1. Tampering with code in order to get spe-
cific results

2. Manipulating input in order to get spe-
cific results

3. Correlating input/output with environ-
mental context

Compared to other theoretical understand-
ings, RPM differs in the requirement for se-
mantic equivalence and its definition of secu-
rity. For its security property, RPM posits
that if 1) the behavioral (blackbox) infor-
mation gleaned from the obfuscated circuit
C’ has no correlation with the original cir-
cuit’s behavior and 2) the structural (white-
box) topology of C’ has no more correlation
with the original circuit than any randomly
chosen circuit of similar kind, then the in-
tent of the original circuit has been protected.
RPM also allows a different input/ouput se-
mantics in the obfuscated circuit, as long as
the intended, original output is recoverable.
To achieve this effect, RPM uses both se-
mantically preserving whitebox and seman-
tically recoverable blackbox transformations.
In general, an obfuscating function has only

White Box Transform
Semantically Recoverable

White Box Transform
Semantically Preserving

Figure 2: Obfuscation as Set Selection

two possibilities: whitebox changes which in-
duce a blackbox transformation on the in-
put/output and whitebox changes which pre-
serve blackbox semantics. An obfuscator may
change the whitebox structure of a circuit so
that blackbox input/output relationships of
the original circuit C are changed. Likewise,
an obfuscator may change whitebox structure
in such a way so that semantic equivalence
with C' is preserved. We illustrate this dis-
tinction in Figure 2 and note that we can al-
ternatively view obfuscation as a set selection
process.

2.3 Uniform Set vs. Iterative Selec-
tion

We design a framework that supports
both semantic preserving/semantic recover-
able transformations. For sake of brevity, we
limit our discussion in this paper to the white-
box, semantic-preserving component. In other
words, we only consider experiments where al-
gorithms are sequenced, semantic-preserving
structural transformations based on random
or deterministic choices arranged in some ran-
dom or deterministic manner. As Figure 2
illustrates, we can view an obfuscator as a
program that selects programs from a set of
functionally equivalent variations (i.e., poly-
morphic versions).

For example, all semantic-preserving obfus-
cators that produce a variant of circuit C,
where C € é¢ and d¢ C dx-y-s-q, will se-
lect some (other) element of d¢, regardless of
the theoretical model we choose to describe its
security. We may conceive of one obfuscation

Iterative random
whitebox transformations

True random
set selection

Figure 3: Random Uniform Set Selection ver-
sus Iterative Random Selections

goal and measurement criteria as whether we
have maximized the randomness between the
intermediate gate structure of C' and the in-
termediate gate structure of its variant (C’; in
Figure 2). This translates to the goal of cre-
ating the best variant (in terms of confusion)
that still accomplishes the same function as

C.

RPM assumes that the best-possible obfus-
cator under this criteria would be one that
chooses a circuit variant C’ from the entire
set of functional equivalents (6 in Figure 2)
in a random, uniform manner. This random
choice would represent our best attempt at
producing a variant with random properties,
or saying it another way, our best attempt
at producing a variant that has confused and
diffused the topological structure of the orig-
inal circuit C. Even if we bound the size of
the circuit family for (which is the primary
factor in determining the set size of dx-y-s-q
and thus the subset size of ¢), enumerating
all possible circuits with such a configuration
is super-factorial in running time and storage
requirements. However, if the circuit size is
reasonably small, enumeration is feasible and
we can select functional alternatives in a ran-
dom, uniform manner. We leverage this fact
in the construction of one half of our experi-
mental framework (see Section 6) which deals
with finding replacements for very small sub-
circuits.

As Figure 3 depicts, we summarize an ideal
obfuscation selection process under RPM
compared to achievable, practical obfuscation

processes that we can build currently. RPM
posits that we can do no better than an ob-
fuscator which chooses an element in a uni-
form, random fashion from the set of semanti-
cally equivalent alternatives (i.e, d¢). In Fig-
ure 3, C, represents such a choice. Current
obfuscation techniques that perform iterative
forms of confusion and diffusion, at best, only
produce variants that are structurally close to
each other. We are interested in how far we
may alter an original circuit structure through
small changes before it becomes indistinguish-
able from a truly random variant. After per-
forming some sequence of small transforma-
tions, we focus on how much intermediate gate
information of the original C'is revealed by the
final variant (C), in Figure 3).

One motivating reason for developing a
whitebox variation environment is to explore
whether random iterative selections might
eventually approach a truly uniform selection
from a large circuit family. If it is possible, we
would expect the distribution of obfuscated
circuits that come from an iterative random
selection sequence obfuscator to be indistin-
guishable from a random uniform set selection
obfuscator. In either case, we base the ideal
variant to be one that has least correlation
(according to some definable metric) with an
original circuit.

Since we are not concerned with function
hiding itself, we limit our concern to measur-
ing how effective we can create a randomized
variant of some original circuit. Our frame-
work provides us a way to represent circuits
and design experiments with a large option
space in how small random alternatives are
created. We present next the environment it-
self with a description of how we carry out
experiments.

INPUT(T)
INPUT(2)
o | INPUT(3)
INPUT(6)
INPUT(T)

QUTPUT(22)
QUTPUT(23)

10 = NAND(, 3)
11 = NAND(3, 6)

16 = NAND(2, 11)
o | 19.= NAND(11, 7)
22 = NAND(10, 16)
23 = NAND(16, 19)

Figure 4: ISCAS Benchmark Circuit ¢17

2.4 Circuit Representation

Circuits have several manifest properties. We
let SIZE(C) = n—m—s denote that cir-
cuit C' has input size n, output size m,
and intermediate gate size s. For example,
in Figure 4, SIZE(c17) = 5—2—4. Out-
put gates are distinguished intermediate gates
and together with the inputs define the de-
notational semantics of the circuit. We let
2(C)={NAND, XOR} denote that circuit C' has
basis €2 = {NAND, XOR}. For example, in Fig-
ure 4, Q(c17)={NAND} and we would refer to
c17 as a NAND-only circuit. For notational pur-
poses, let @ represent the set of all gates (in-
termediate or output) in a circuit C' and let
gz represent a gate g, € ®. For example, in
Figure 4, ® = {10, 11, 16, 19, 22, 23}.

In addition, we indicate the level of a gate
g within a circuit by level(g), which is syn-
onymous with the trace level of a gate within
a signal propagation hierarchy, assuming that
every output signal has a final level of 0 and
some virtual level where its Boolean logic sig-
nal is computed. Also, we let |level(g)| repre-
sent the number of gates belonging to a par-
ticular level within the circuit. For example,
in Figure 4, all inputs ({1,2,3,6,7}) are at level
3, level(10) = level(11) = 2, level(16) =
level(19) = 1, |level(16)| = |level(19)] = 2.
Each node within the DAG of a circuit C con-
stitutes a specialized node with an associated
Boolean logic function, derived from Q(C).

We define any subset of gates o« C & as
a subcircuit of circuit C, and we use Cgyp to
help identify algorithmic selections. We des-
ignate an k-gate subcircuit as a selection by
[a1,ag, ...,a]. As a final property of interest,
a circuit (and by definition, any subcircuit)
readily express its blackbox behavior by enu-
meration of all inputs, subsequent evaluation
and propagation of signals on all intermedi-
ate gates, and recording of the corresponding
output.

We refer to the full list of input/output
pairs of the circuit as the truth table. The
blackbox behavior of such a circuit may be
succinctly expressed by the output signals cor-
responding to a canonical ordering of the 2™
inputs, which we refer to as the circuit sig-
nature. For instance, the signature for a 2-

input and 1l-output Boolean logic gate with
AND functionality has a signature < 0001 >
while a 2-input OR logic gate has signature
< 1110 >.

3 Experimental Configura-

tion

We derive experiments based on textual de-
scriptions of Boolean logic in BENCH for-
mat [7] and utilize a Java-based graph li-
brary package to support graph-based manip-
ulation of the associated circuit DAG. Using
this common DAG form, we compute a variety
of graph-based, circuit-based, and semantics-
based metrics. Our variation algorithm incor-
porate Kerckhoff’s principles of cryptographic
systems design [10]: namely, we give every
possible choice made by the obfuscator as
public knowledge while keeping only the pre-
cise set of steps used for a given obfuscation
secret (much like the only secret part of a se-
cure cipher should be the encryption key).

To perform whitebox transformation, we
use a two-step iteration process which in-
cludes subcircuit selection followed by subcir-
cuit replacement. Figure 5 illustrates the gen-
eral notion, in two different views, of how we
take an original circuit C' and apply iterative
changes to it that produce intermediate ver-
sions, C]. Each intermediate version, C! be-
comes the starting point for the next iteration
which will produce the intermediate version
Ci;1- When we complete some n iterations
of selection and replacement, the final vari-
ant becomes our candidate obfuscation vari-
ant, C'.

The large number of experiments which we
may create using this approach derives from
the nuance of each selection and replacement
component. We say that a selection or re-
placement activity is random if we leave the
choices of the algorithm completely open to a
probabilistic dice-roll made by the algorithm
(pseudo-random number generators suffice for
this purpose). We say that a selection or re-
placement activity is smart if some criteria or
user preference is used to guide or replace a
probabilistic choice made by the algorithm. In
the case of our selection/replacement algorith-

mic framework, the obfuscation key consists of
the combined composition of all random and
smart choices made during an experiment.

1. Random selection: Select a subcircuit

Cyup C C at random.

2. Random replacement: Select a replace-
ment circuit Cpp € d¢,., at random.

rep

3. Smart selection: Only select subcircuits
which have a particular property. If
the subset of allowable selections contains
more than one subcircuit, then one may
be selected at random or based on an-
other user-specified criteria.

4. Smart replacement: Similar to smart se-
lection, only select replacement circuits
from the library which have a particular
property. If the subset of allowable selec-
tions contains more than one subcircuit,
then one may be selected at random or
based on another user-specified criteria.

We define a deterministic obfuscation experi-
ment to be an 5-tuple: (C,n,§,0,7). We de-
fine the tuple as follows: C'is an original cir-
cuit, n is the number of iterations, £ is a set of
selection algorithms with cardinality |{] = n
where s; € £ indicates the selection algorithm
performed during iteration 4, o is a set of selec-
tion algorithms with cardinality |o| = n where
r; € o indicates the replacement algorithm
performed during iteration 7, and 7 is a set of
gates that are are given selection priority dur-
ing the incremental execution of the experi-
ment. The trace of an experiment records all
pertinent information and metrics across all
iterations of the experiment as well. It would,
for example, indicate for each iteration, which
specific set of gates or subcircuit was chosen
for selection and which specific set of gates
or subcircuit was chosen for replacement. It
is possible, for example, that no suitable re-
placement could be found for a given selected
subcircuit and given the constraints of the re-
placement criteria. Thus, some iterations of
an experiment may return the same original
circuit.

Since we design each selection/replacement
iteration as independent, atomic operations,

we use T to represent the notion of a global
experiment state where we may target some
gates of interest in the original circuit. For ex-
ample, we may have a smart (criteria) based
experiment that stipulates at least one origi-
nal gate be considered by every selection al-
gorithm, until all original gates are replaced.
This criteria would, over some number of iter-
ations close to the original circuit size, guar-
antee that all original gates of a circuit are
replaced at least once. If, after accomplishing
such criteria, we reset 7 to be all gates in the
current iteration variant, we would then guar-
antee (after some number of iterations) that
all original gates with their newly introduced
gates would be replaced at least once as well.

@ n— > €7

i

n—— > @

<

Subcircuit Subcircuit
Selection Replacement

@ C

“sub rep

Subcircuit
Library
(CIRCLIB)

e

2 i n

Figure 5: Iterative Substitution and Replace-
ment

4 Subcircuit Selection

Given an ezperiment defined as the tuple
(Cyn,& 0,7), & represents a set of selec-
tion algorithms and s; € ¢ indicates the
selection algorithm used during iteration <.
We define a subcircuit selection operation
Csup = s(C, x,,T) with several characteristic
attributes. The input to the algorithm is a
circuit C, the (intermediate gate) size of the
selection subcircuit z, the particular strategy
v € S (whether smart or random), and an
optional set of gates 7 that provide limiting
criteria for the selection strategy itself.
The set S of possible selection strategies
(described below) must have all members
defined a priori and we use the following

set currently: S = {RandomSingleGate,
RandomTwoGates, RandomLevel T-
woGates, LargestLevel TwoGates, Out-
putLevel TwoGates, FixedLevel TwoGates,

RandomAlgorithm}. The output of the algo-
rithm Cyy, is a circuit whose signature and
SIZE(Cgsyp) forms the basis for functionally
equivalent alternatives and replacement.
As an example, iteration ¢ that uses the
RandomSingleGate strategy would be delin-
eated as s; = s(C, 1, RandomSingleGate, (),
if we assume no experiment level criteria for
selection/replacement.

4.1 Selection Strategies

In terms of selection approaches, we presently
experiment with six different subcircuit-
selection strategies. The RandomAlgorithm
strategy chooses any possible selection strat-
egy for a single iteration of the experiment
and we define five as follows:

e RandomSingleGate — Choose g1 € ¢
in a random, uniform manner.

e RandomTwoGates — Choose g; € ¢ in a
random, uniform manner. Choose g3 € ®

where go # g1.

e RandomLevelTwoGates — Choose g €
® in a random, uniform manner. Choose
g2 € ® where gy # g1 and where level(g)
= level(g1) = 1 or level(ga) = level(gy).

e LargestLevelTwoGates — Choose g1 €
® such that |level(g1)| = lmar Where Cpgn
represents the maximum size of all levels
within the circuit: £,q, = U{|level(g)] |
gx € ®}. Choose go € ® where g2 # g1
and where level(ge) = level(g1) — 1 or
level(g2) = level(gr).

e OutputLevelTwoGates — Choose g €
® where g7 is a distinguished intermedi-
ate gate (i.e, an output of the circuit).
Choose g2 € ® where gy # g1 and where
level(ga) = level(g1) — 1 or level(ga) =
level(gy).

e FixedLevelTwoGates — Choose g1 € @
where, for some user-provided level crite-
ria k, level(g1) = k . Choose g2 € ®

where ga # g1 and where level(g2) =
level(g1) — 1 or level(g2) = level(g1).

e RandomAlgorithm — Choose any selec-
tion strategy v € S in a random, uniform
manner.

lteration 6 Iteration 7

Figure 6: Iteration Example

Every random or smart selection strategy
may be guided by criteria-based rules at the
experiment level. When 7 #), we modify the
strategies listed by limiting the possibilities
of at least the first gate chosen by the strat-
egy. For example, an experiment that guar-
antees replacement of all original circuit gates
would provide 7 C ® to each iteration selec-
tion, which is to say that the strategy would
make its first gate selection from the subset.
If we used a RandomSingleGate strategy, the
algorithm would instead choose gy € 7 in a
random, uniform manner. Depending on the
result of the replacement operation, if we ef-
fectively replace an original gate g, € 7 (i.e.,
change fan-in, fan-out, or gate type), then we
remove that gate from the set of possible first
choices for the next iteration: 7 =17\ {g»}.

4.2 Smart Strategy Limitations

A number of future, possible “smart” subcir-
cuit selections can lead to NP-complete prob-
lems in generating the appropriate set of se-
lectable subcircuits. For instance, a smart
selection strategy based on subgraph isomor-
phism creates an NP-complete search, which
is too computationally involved for large cir-
cuits. We may also develop selection strate-
gies that look for specific Boolean logic func-
tions (adders, multiplexer, decoder, compara-

tor, etc.) for replacement. These would in-
troduce greater than polynomial complexity
to the obfuscator and would warrant heuristic
options for the search.

5 Subcircuit Replacement

Given an ezperiment defined as the tuple
(C,n,& 0,7), o represents a set of replace-
ment algorithms and r; € o indicates the re-
placement algorithm used during iteration 3.
We define a subcircuit replacement operation
Crep = 7(Csup, 2, ¥,8) with several charac-
teristic attributes. Cy,p is the circuit chosen
for replacement, z is the requested gate size
of the replacement circuit, v represents crite-
ria that governs how we generate the replace-
ment circuit library (described in Section 6.1),
and () represents the basis choice of the re-
placement circuit. Given access to a selected
circuit, we can derive the key characteristics
that determine a replacement circuit library.
SIZE(Csyup) gives us input size n, output size
m, circuit (intermediate gate) size s. Com-
bining this with knowledge of the basis, 2, we
have enough information to create or query a
circuit family.

As we mention previously, the replacement
component of our experimental environment
actually accomplishes for small subcircuits
what we would desire to do for large circuits.
Recalling Figure 2, the subcircuit library gen-
erator (seen as CIRCLIB in Figure 5) first cre-
ates a set of circuits 0,-;m-s-0. From this set
of circuits, we choose randomly and uniformly
an alternative variant for Cy,; from the func-
tionally equivalent subset dc,,, C On-m-s-0-
Therefore, Crep € dc,,, and, ideally, oc, , #
(). Based on the circuit selected and the crite-
ria for replacement, there are a countless num-
ber of configurations in which there are no
alternative replacements and thus é¢c,,, = 0.
For example, there are no [2-1-1-{NAND}| cir-
cuits that implement the AND Boolean logic
function with signature < 0001 >. Likewise,
we could also design many experiments that,
when given a circuit C, only return the origi-
nal circuit C.

Figure 6 illustrates two iterations (6 and 7)
from an experiment with the c17 circuit from

100000000

10000000 -
1000000 / £
100000 / / /
10000

1000 //

100 / /

0

1

—e— Smallest

—=— +RedundateGates

+AllowConstants
+Doublelnputs
—*—-ExactCount

Figure 7: Circuit Library Sizes

Figure 4. The figure shows that in iteration
6, CORGI uses a two-gate selection strategy to
choose the subcircuit Cy,, = [32, 31] and then,
once it removes the subcircuit from the origi-
nal, replaces it with Cy., = [41,42,43]. Both
of these circuits belong to the Cy4_5_x fam-
ily. We note that the replacement increases
the gate size of the overall circuit by one and
increases the levelization also. Other effects
of replacement may include changes to fan-
in, fan-out, link length, unique input/output
paths, unique paths through node, average
paths per node, nodes per level, largest level,
link length per node, average link length, and
average nodes per level. We also note that, in
iteration 6, gate 43 of), is essentially the
same gate 32 of Cy,,: though renumbered, the
gate has the same logic function, fan-in, and
fan-out relationship. Figure 6 also demon-
strates how the next iteration (7) of the ex-
periment use a two-gate selection strategy to
choose the subcircuit Ci,p, = [39, 43|, which re-
sides in the C3_1_o family and replaces it with
a functionally equivalent C,., = [44,45, 46, 47]
which belongs to the C5_1_4 family. This ex-
ample illustrates that we may grow the circuit
size by virtue of replacing a circuit of size s
with one of s + 1, s + 2, and so forth.

We note here that, if viable replacements
were possible, we could easily replace size s
subcircuits with functionally equivalent ver-
sions of size s, s — 1, or s — 2. It should
make sense, that there are no single-gate re-
placement circuits for single-gate selection cir-
cuits, and there are some, but few, numbers of
single-gate replacement circuits for two-gate
selections. We discuss some of these relation-
ships next, but point out that gate size and
basis type drive the size of potential library

classes. Currently our primary experimenta-
tion centers on single and two gate selection
strategies, thus limiting our ability to report
on optimizing or identical-size replacements at
this time.

5.1 Library Generation Algorithm

Currently, we define only one iterative re-
placement algorithm but provide
basis-transforming operations (NAND-only |,
NOR-only) and structure-transforming opera-
tions (decompose multiple fan-in gates to dual
fan-in, convert to sum-of-minterms form, con-
vert to product-of-maxterms) that work at the
whole-circuit level or do gate-by-gate replace-
ment for all gates within the circuit. We focus
currently on the use of purely random replace-
ment choices versus smart options and de-
scribe next our recursive algorithm that enu-
merates circuit possibilities to produce a char-
acteristic circuit family. We conceptually view
this as the creation process for the circuit fam-
ily dx-y-s-q seen in Figure 2, where we start
with the knowledge of input size, output size,
gate size, and basis.

We begin with a discuss of what consti-
tutes a “legal circuit”, because the genera-
tion algorithm must enumerate all possible
graphs which conform to a set of combina-
tional logic constraints. Assuming that all cir-
cuits consist of inputs and a set of one or more
gates with exactly two inputs each (2-input/1-
output logic function gates), some of which
we treat as outputs, there are still a few ques-
tions to ask. We characterize these questions
as true/false queries that form a Boolean 6-
tuple, which we define as v in the description
of a replacement operation: 7(Cysyp, 2, ¥, Q).
We may vary these options for every replace-
ment opportunity in an experiment, but typ-
ically choose a set of options v that remain
constant for the entire sequence of iterations.
Each option determines also how many cir-
cuits are produced, and we show in Figure 7
the exponential growth of library sizes (based
on intermediate gates), based on different gen-
eration options for the C3_1_x family as ref-
erence.

several

e SymmetricGates — Are gates symmet-

ric?

e RedundantGates —— Should we allow
gates that are identical to other gates
based on the inputs?

e AllowConstants —— Should we allow
the circuit immediate access to the con-
stants True and False?

e DoubleInputs — Should we allow both
inputs to a gate to originate in the same
place?

e ExactCount — Does the set contain all
circuits within a certain size bound or
only all circuits of an ezact size?

e SimpleQutputs — Which gates may be
outputs?

generateAll (gatelum)
{
for each gate type:
for each enumeratelnputCombinations()
add gate type with specified inputs
if (RedundantGates and truth table of new gate is|
not equal to another gate’s truth table)
if (legalCircuit())
output circuit
if (gateNum<size bound)
generateAll (gatelum+1)
}

enumerateInputCombinations()
{
if (AllowConstants)
include the constants True and False with the inputs
select all gates and inputs g (1..n)
if (SymmetricGates)
deselect all combinations (a,b) such that a<b
if (not DoubleInputs)
deselect all combinations (a,b) such that a=b
return remaining combinations

}

legalCircuit(){

if (ExactCount and circuit does not contain
the maximum number of outputs)
return false

else if (SimpleQutputs and any but the last numOutputs
gates contain open outputs)
return false

else if (the circuit contains more than numQutputs
number of open outputs)
return false

else
return true

Figure 8: Circuit Enumeration Algorithm

These options are the primary way we may
make smart choices about the libraries that we
choose to make random selections from. Our
first initial generation algorithm was very ba-
sic. However, by accounting for the six cre-
ation options listed above, we present a fi-
nal refined version of the recursive algorithm

Table 2: Transformation Library Size
Transformation Library | DB Size

1 to 2 Gates 23.7 KB
2 to 3 Gates 53.6 MB
3 to 4 Gates 166.9 GB
4 to 5 Gates 934.9 TB

in Figure 8. Several of the creation options
govern what we refer to as practical versus
theoretical constraints on circuit construction.
For example, it is highly unusual for real-
world logic circuits to have gates with in-
puts both coming from the same source (the
DoubleInputs option). The SimpleOutputs
option also gives ability to preclude circuit re-
placement options that have dangling inter-
mediate gates that are never actually used.
We observe from running many (5000+) ex-
periments with varying number of iterations
that randomly chosen alternatives of two,
three, and four gate size typically are con-
sidered “bad” from the perspective of normal
VLSI/ASIC circuit design. As a first goal, we
want to consider the effect of purely random
replacements while learning what metrics best
reflect either hiding properties of interest for
reverse engineering purposes.

Once the enumeration algorithm generates
(or locates) a circuit library with the appro-
priate circuit typology, it can find circuits
within the family that match a particular
(functional) signature. For our current ex-
periments with 1 and 2 gate selection using
2, 3, or 4 gate replacement, we discover that
it is more efficient to enumerate such libraries
in memory versus access them from persistent
data stores. As expected, we find that gener-
ation and retrieval of replacement candidates
remains constant regardless of the circuit un-
der consideration or the number of experiment
iterations.

5.2 Library Creation and Size

Because of the recursive nature of the algo-
rithm, we can see the factorial blowup in Fig-
ure 7 of possible circuit numbers, using the 3-
1-X family as an example. We also note that
there are orders of magnitude in size differ-

Table 3: Library Efficiency

Usable Circuits | Total Circuits | Efficiency
1 Input - 1 Output 1,512 1,512 100.00%
1 Input - 2 Outputs 3,240 3,240 100.00%
2 Inputs - 1 Output 9,720 9,720 100.00%
2 Inputs - 2 Outpuis 22,468 27,216 82.55%
3 Inputs - 1 Output 4,752 33,696 14.10%
3 Inputs - 2 Outputs 26, 820 116,640 22.99%
4 Inputs - 1 Output 0 806, 400 0.00%,
4 Inputs - 2 Outputs 5, 184 356, 400 1.45%
Total 73,696 634, 824 11.61%

ence based on the creation options. We have
found from numerous experiments that ¢ =
(SymmetricGates = true, RedundantGates =
false, Al1lowConstants = false, DoubleInputs
= false, ExactCount = true, SimpleQutputs
= true) produces circuits most like those we
expect to see in traditional VLSI designs. We
have discovered that certain option combina-
tions produce gates which may be degenerate
(all 1 or all 0), easily optimized away by a lin-
ear search algorithm, or produce redundant
copies of either inputs, intermediate gates, or
output gates. By using this approach, we also
see the intractability of efficiently producing
variants of larger circuits in a truly random
way (if we want to use larger gate selection
with full enumeration of the replacement al-
ternatives). Table 2 illustrates the recorded
disk space or memory requirements for sev-
eral typical selection/replacement requests to
the CIRCGEN library. To support 5 gate circuit
replacements, we need almost 1 Petabyte.

Q={NAND} -> Q={AND, NAND, OR, NOR, XOR, NXOR}
4000 Iteration Experiments

Recation 100 Heration 500

Figure 9: Uniform Gate Distribution Experi-
ment

To improve efficiency further, we have the
ability to cull out from a library circuits that
have no expectation of every being used. This
ability comes as an artifact of the way in which

we select subcircuits to begin with and with
the particular library creation options avail-
able to us. In particular, choosing a certain
number of gates will result in variance be-
tween the actual circuit classes that contain
equivalent circuits. For example, choosing two
gates might result in a circuit with one input,
two inputs, three inputs, or four inputs. In
Table 3, we show the efficiency of choosing
a subcircuit containing 2 gates and replac-
ing it with a subcircuit containing 3 gates.
We show the percentage of the generated sub-
circuits containing 3 gates which participate
in transformation rules, meaning those which
the algorithm would actually use in a replace-
ment query. We note that the cost of stor-
ing only those circuits which can be used for
replacements would be significantly less than
the cost of storing all sub-circuits. We also
note that a large body of future work remains
to cull out circuit replacements which are by
nature easy to find and reverse, though we
leave the valid discuss of circuit reduction and
logic minimization for another time. We are
currently integrating various optimizing algo-
rithms into the experimental framework as
part of the variation process.

6 Obfuscating Measures of

Interest

In thousands of experiments in our environ-
ment, we have ran various types of single
and two gate selection and replacement ex-
periments. Most of our experimental circuits
come from ISCAS-85 Benchmark set or cus-
tom designed variants of comparators, carry-
look-ahead adders, ripple-carry adders, mul-
tiplexors, decoders, and randomly generated
circuits. Our maximum iteration run is 10000
currently, our largest effective selection and
replacement size choice is 2 gates replaced
with 2/3/4, and our largest real-world circuit
for consideration has 3500 gates (we have pro-
cessed randomly generated circuits with 10000
gates as well).

Besides understanding basic metrics that
we may collect from circuits undergoing struc-
tural change, we find interest in properties of
the circuit that point to effective information

Q={NOR} > Q= {AND, NAND, OR, XOR, NXOR}

CIRCUIT SIZE ‘ ‘ I

#%T teration 1000 Iteration 3000

Figure 10: Full Replacement Experiment

hiding or beneficial mutations that foster real-
world circuit protection goals. There are sev-
eral information hiding properties of interest
if we focus on the hiding of intermediate gate
signals. We observe that the power of a ran-
dom iterative algorithm with small selections
size (1 or 2) to accomplish signal hiding is very
small: mainly because 1-gate and 2-gate se-
lections cannot physically or logically support
hiding (regardless of any replacement we may
use). Single-gate circuits, for example, will
never hide the original signal because there
must be a gate in the replacement circuit (re-
gardless of gate size) that keeps the output
behavior of the original gate. Two-gate cir-
cuits will only provide opportunity for hiding
when gates are arranged in more than level
(within the virtual circuit create by the selec-
tion itself, not their level within the circuit).
If two gates chosen are independently related,
then on average, random and criteria-based
random selection strategies will not on aver-
age choose the structure that is suitable for
signal hiding.

As another facet of information hiding, we
have particular interest in whether the algo-
rithm effectively replaces gates of the original
circuit itself. We note that hiding an origi-
nal signal is only one possible side effect of
replacing an original gate: other possibilities
include copying the original gate signal (re-
dundancy), inverting the original gate signal,
copying an input/output signal, inverting an
input/output signal, or introducing degener-
ate gates that always produce either 1 or 0. As
an example, an verb” AND” gate that has dual

inputs originating from the same source will
always duplicate the input signal (producing
a buffer) while an XOR gate that has dual in-
puts from the same source will always output
a 0, (producing a degenerate gate). We focus
here simply on the nature of the algorithm to
completely remove an original gate from the
final version and leave for future analysis the
reversibility properties of the replacement.

6.1 Measuring Replacement

We report on three forms of experiments de-
signed to measure gate replacement. We de-
fine gate replacement as the case where a gate
chosen for selection does not appear in the re-
placement circuit in some renumbered form.
This means that there is no gate in the re-
placement circuit with the same logic function
(gate type), fan-in, and fan-out. We leverage
the ability of our algorithm to choose the ba-
sis type of its replacement circuits to measure
replacement. Given a replacement operation
7(Csup, 2, 1, §2), we can vary € and thus guide
the types of Boolean gates within the circuit
over the course of the experiment. If we count
the gate types of all gates within the circuit,
over each iteration, we can tell when one type
of gate no longer appears. If, for example, a
circuit were a NAND-only circuit and we de-
sign an experiment where for all r; € o, Q =
{NOR, OR, AND, XOR, XNOR}, then the we know
when we find the iteration where the number
of NAND gates in the variant circuit = 0, we
have replaced all the original gates of the cir-
cuit.

Figure 9 illustrates the first type of exper-
iment where we begin with a NAND-only cir-
cuit of around 700 gates. We set the replace-
ment basis € to be all six possible types: 2
= {NAND, NOR, OR, AND, XOR, XNOR}. What we
expect to see is that the circuit will manifest
a fairly even distribution of gate types, as-
suming the selection/replacement operations
are uniform as we expect. After conduct-
ing 14 separate 4000-iteration experiments us-
ing a RandomTwoGates selection strategy and
3-gate random replacement, Figure 9 shows
the relative distribution of gate types for each
experiment at iteration 100, 500, 2000, and
4000. What we observe are uniform distribu-

tion of gate types. Even for those gates that
are NAND, they may not be originalNAND gates
either, but we do not account for those in this
experiment.

O={NOR} - Q-={AND, NAND, OR, XOR, NXOR}
Circuit: ISCAS-85 c432,

1
Iteration 250

i
Iteration 750

Iteration 500

ca32 120 gates (4 ANDs + 79 NANDs + 19 NORs + 18 XORs + 40 inverters)

Decomposed 230 gates (60 ANDs + 151 NANDs + 19 NORs + 40 inverters)

843 gates (843 NORs)

Decomposed
NOR

Figure 11: Smart Experiment/Full Replace-
ment Experiment

Figure 10 illustrates a second experiment
using a NOR-only circuit of around 850 gates
(the decomposed, NOR-only variant of the
ISCAS-85 ¢880 circuit referenced in Figure
11). We show two (typical) results from
15 separate T7400-iteration experiments us-
ing a RandomAlgorithm selection strategy
(weighted 75% towards RandomTwoGates se-
lection strategy) and 3-gate random replace-
ment. We use {2 = {NAND, OR, AND, XOR, XNOR}
and expect to see an asymptotic decrease in
NOR gates over time. In all of our experiments,
purely random selection with no smart crite-
ria at the experiment level always leaves some
small number of original gates. This of course
can be attributed to the fact that as the cir-
cuit grows in size, the small remaining original
gate types become less likely to be chosen for
replacement.

Figure 11 uses the same NOR-only circuit as
a starting point and illustrates the results of
a (typical) single experiment out of 25 where
we chose a smart selection approach at the
experiment level (reference Section 4). In this
case, we set 7 = ® and indicate that selection
algorithms should favor original gates as their
first selection choice. Each experiment was
a 1000-iteration experiments using a smart
RandomTwoGates selection strategy and 3-gate
random replacement. We use 2 = {NAND, OR,
AND, XOR, XNOR} and expect to see all NOR

Figure 12: Crossover Example Context

gates to be removed from the circuit over time.
As expected, in every experiment we saw all
original gates removed from the circuit, on av-
erage, around iteration 630. In Figure 11, we
know that the variant at iteration 636 con-
tains no original gates. This illustrates the
usefulness of smart-based variants of strate-
gies which may be affected at the experiment
level.

6.2 Control Diffusion and Redun-
dancy

We conclude with a brief discussion of an-
other circuit artifact of interest in both re-
verse engineering and mission assurance. By
virtue of the two-gate selection strategies we
specify, when gates in independent control
paths are chosen for selection and replace-
ment, the replacement circuit induces a con-
trol flow or diffusion within the circuit that
did not exist before. Using the old adage
that one man’s trash is another man’s trea-
sure, the criticisms we give for small two-
gate, cut set selection/replacements to pro-
vide signal hiding do on the other hand fos-
ter the ability to duplicate signals. When sig-
nals become duplicated in new control flows,
this property may further goals such as fault
tolerance or open up new methods of pro-
ducing modular redundancy. Figure 12 illus-
trates this behavior, which occurs in nearly
95% of all RandomTwoGates selection strategy
experiments. We highlight in this iteration
example, Cs,p = [32,31], which resides in the

C3_9_o family. Gates 31 and 32 have no de-
pendency or control flow between them be-
fore the selection and replacement operation.
Once chosen for selection, however, their re-
placement induces a new control flow when
Crep = [41,42,43]. We leave for future work
and results more extensive analysis of this
phenomenon, but note here that the current
set of our experimental strategies for two-gate
selection create this behavior with high prob-
ability. We also leave for future analysis the
resilience of such constructions to detection or
removal.

7 Conclusion

In this paper we present a framework for
whitebox circuit variation and describe our ef-
forts to understand the effect of random and
deterministic subcircuit selection and replace-
ment on hiding properties of interest. We
show the value of the framework for answering
questions related to randomness as an obfus-
cation metric in considering circuit variants
that may be used in reprogrammable hard-
ware environments such as FPGAs. We give
results of initial experimentation in support
of specific questions such as gate replacement
and gate diffusion/crossover. For brevity, we
do not discuss all initial findings here but do
expect in future work to report results re-
lated to a wide variety of questions: larger
gate selection strategies, alternate possibili-
ties for circuit library generation, impact of
reduction or reversal algorithms, attempts for
larger circuit library generation and storage,
optimization and steady-state circuit replace-
ments, and measurements of physical charac-
teristics with real-world circuits.

References

[1] B. Barak, O. Goldreich, R. Impagliazzo,
S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (im)possibility of obfus-
cating programs. Flectronic Colloquium
on Computational Complexity, 8, 2001.

[2] Mohamed R. Chouchane,
Walenstein, and Arun Lakhotia.

Andrew
Sta-

tistical signatures for fast filtering of
instruction-substituting metamorphic
malware. In WORM ’07: Proceedings of
the 2007 ACM workshop on Recurring
malcode, pages 31-37, New York, NY,
USA, 2007. ACM.

Frederick B. Cohen. Operating system
protection through program evolution.
Comput. Secur., 12(6):565-584, 1993.

Christian S. Collberg and Clark Thom-
borson. Watermarking, tamper-proofing,
and obfuscation: tools for software pro-
tection. IEEE Trans. Softw. FEng.,
28(8):735-746, 2002.

Patrick Cousot. Constructive design of
a hierarchy of semantics of a transition
system by abstract interpretation. Theor.
Comput. Sci., 277(1-2):47-103, 2002.

S. Goldwasser and G. N. Rothblum.
On best-possible obfuscation, pages 194—
213. 4th Theory of Cryptography Confer-
ence, TCC 2007. Proceedings (LNCS Vol.
4392). Springer-Verlag, Germany; Berlin,
21-24 Feb 2007.

M.C. Hansen, H. Yalcin, and J.P. Hayes.
Unveiling the iscas-85 benchmarks: a
case study in reverse engineering. Design
€9 Test of Computers, IEEFE, 16(3):72-80,
1999.

Michael Huth and Mark Ryan.
in computer science: Modelling and Rea-
soning about Systems. Cambridge Uni-
versity Press, 2004.

Logic

Yuval Ishai, Amit Sahai, and David Wag-
ner. Private circuits: Securing hardware
against probing attacks. pages 463-481.
CRYPTO, 2003.

Auguste Kerckhoffs.
militaire. 9:5-38.

La cryptographie

J. Todd McDonald, Yong C. Kim, and
Alec Yasinsac. Software issues in digital
forensics. ACM Operating Systems Re-
view, 42(3), April 2008.

[12]

[14]

[15]

[16]

[17]

[19]

J. Todd McDonald and Alec Yasinsac.
Applications for provably secure intent
protection with bounded input-size pro-
grams. In Proceedings of the Interna-
tional Conference on Availability, Relia-
bility and Security (ARES 2007). IEEE
Computer Society, 10-13 April 2007.

Mila Dalla Preda and Roberto Gia-
cobazzi. Semantic-based code obfus-

cation by abstract interpretation. In
ICALP, pages 1325-1336, 2005.

T. Sander and C. F. Tschudin. On soft-
ware protection via function hiding. In-
formation Hiding, pages 111-123, 1998.

Kris Tiri and Ingrid Verbauwhede. De-
sign method for constant power con-
sumption of differential logic circuits. In
DATE ’05: Proceedings of the conference
on Design, Automation and Test in Eu-
rope, pages 628-633, Washington, DC,
USA, 2005. IEEE Computer Society.

Andrew Walenstein, Rachit Mathur, Mo-
hamed R. Chouchane, and Arun Lakho-
tia. Normalizing metamorphic malware
using term rewriting. In SCAM ’06: Pro-
ceedings of the Sixth IEEE, pages 75-84,
Washington, DC, USA, 2006. IEEE Com-
puter Society.

Alec Yasinsac and J. Todd McDonald.
Tamper resistant software through intent
protection. The International Journal of
Network Security, 7(3):370-382.

Alec Yasinsac and J. Todd McDon-
ald. Of unicorns and random pro-
grams. In Proceedings of the 3rd
TASTED International Conference on
Communications and Computer Net-
works (IASTED/CCN), 8-10 Nov 2005.

Yu Yu, Jussipekka Leiwo, and Benjamin
Premkumar. Hiding circuit topology
from unbounded reverse engineers. In

ACISP, pages 171-182, 2006.

Yu Yu, Jussipekka Leiwo, and Benjamin
Premkumar. Private stateful circuits se-
cure against probing attacks. In ASI-
ACCS, pages 63-69, 2007.

