Capturing the Essence of Practical Obfuscation

J. Todd McDonald

School of Computer and Information Sciences,
University of South Alabama, Mobile, AL USA.
E-mail: jtmcdonald@usouthal.edu

Abstract. In the realm of protecting programs from illegitimate use, ob-
fuscation offers a modicum of defense against malicious reverse engineer-
ing and tampering. As a field of study, obfuscation would benefit from
a unifying framework that has solid theoretical foundation yet provides
value in empirical study and implementation. The essence of obfuscation
(in practice) is best described as a measurable loss of abstraction. We
argue that mathematical frameworks such as abstract interpretation and
Boolean algebras may provide an ideal marriage of theory and practice,
providing focused direction for future research.

1 Background

Obfuscation is a transformation process that produces semantically equivalent
versions of a given program or circuit, with a definable security goal related
to hiding or understandability of an original program. Notable obfuscation re-
sults prove that virtual black-box (VBB) simulation as an information theoretic
goal is impossible for all functions [1] or for all functions with cryptographic
applications [2]. Other theoretic models relate security to the distributions pro-
duced by the obfuscator itself [3,4]. A steady stream of positive results over
the last decade show that security can be proven in specific contexts or for spe-
cific families of programs: access control [5], point functions [6], re-encryption [7,
8], probabilistic encryption [9], private-key schemes [10], straight-line arithmetic
programs [11], single use programs with hardware support [12], and time-limited
obfuscation [13]. Formal expressions for obfuscation have also grown to include
term rewriting systems [14] and abstract interpretation [15,16].

Real-world obfuscators focus on preventing reverse engineering or tampering
[17-19] to guard intellectual property investment. Successful reverse engineering
aims to correctly identify system components, component interrelationships, or
system representations at higher levels of abstraction [20], whether for beneficial
or malicious purposes. Deobfuscation finds relevance in malware analysis and
virus detection research [21,22]. Circuits and embedded hardware protection
[23] have likewise seen positive results, particularly where fully trusted [24, 25]
or partially trusted hardware [26] is leveraged. Copy prevention through digital
fingerprinting and watermarking [27, 28] and hiding of circuit features have been
demonstrated empirically or proven generally [29, 30].



2 Practical Obfuscation as Loss of Abstraction

Two (often divergent) paths have shaped the meaning of obfuscation. In one ap-
proach, the obfuscator is defined mathematically with a corresponding security
requirement that must be met for all possible programs: VBB, computational in-
distinguishability, best possible, non-malleability, etc. Based on the security test,
proofs typically demonstrate negative results by producing a counter-example.
Weakened definitions and specific contexts often provide positive results. Lifting
specific constraints, such as semantic equivalence, can provide greater possibili-
ties as well [31, 32]. Alternatively, creating obfuscators and making observations
about their capabilities provides real-world context. In this paradigm, practical
metrics or formal characterizations are in view: targeting steps in the reverse
engineering process, computing loss of abstraction, preventing specific attack
vectors, increasing cost-complexity for an adversary, relating adversarial tasks
to known hard problems, or measuring heuristics that relate security to program
attributes. Practitioners have a harder road to travel because characterization is
not an exact science. Defining an adversary’s power and correlating those to se-
curity objectives may require intuition or experience. Metrics and attack vectors
may be valid today but change tomorrow as adversaries employ new strategies.

Real-world obfuscators operate primarily on the syntax/structural level (sup-
porting real-world application) whereas theoretic definitions operate at the func-
tional/semantic level (supporting statements about entire families). The funda-
mental property of obfuscation, from either perspective, is the characterization
of change. White-box polymorphic variation is a structural transformation pro-
cess that preserves functional semantics. Using program diversity itself (creating
large numbers of functionally equivalent variants) can have stand-alone value
as a remedy to piracy [33] and limiting impact of exploitable vulnerabilities.
Obfuscation may best be described as the hiding of one or more semantic level
properties, which is to say, achieving a measurable loss of abstraction. To mature
the definition of obfuscation and lend credence to practical techniques, we need
quantitative measures that adequately describe this loss and a framework that
allows comparison of algorithms themselves.

The use of abstract interpretation (AI) [34] has shown promise as a method
to achieve obfuscation [35, 16] and to support deobfuscation for malware detec-
tion [36,37]. Following [16], a syntactic transformer (or variation process) is an
obfuscator if it meets requirements for potency, semantic equivalence, and conser-
vative transformation. The Al framework provides a method to clearly identify
loss of abstract information by defining adversaries as properties that are either
preserved or obfuscated. It also provides the tools for quantitative analysis of ob-
fuscating transforms, whereby conservative transformations formally express the
more fuzzy notion of obscurity. Abstract interpretation represents one contender
for strengthening analytical studies, giving a rigorous, formal methodology that
separates description of the variation engine from quantitative assessments of
obfuscation.



3 Logic Programs: Bridging Theory and Practice

Boolean logic circuits are ideal for studying obfuscation because they bridge the
gap between the often disparate worlds of theory and practice. They have rich
history in theoretic study related to computational complexity, proof systems,
logic algebras, and computational models. They rival Turing machines (TM) in
answering fundamental questions of computability and possibility. Circuits have
only one polynomial representation space (size), while Turing machines have two
(size and running time). It is possible to show that all (physical) machines with
bounded memory are constructible via sequential circuits and binary memory
units. Further, we can completely simulate machines (whose computations ter-
minate) with circuits. As an observation, many theoretical obfuscation results
are expressed as proofs on circuit classes versus Turing machines.

Circuits also have real-world manifestations that are foundational to every
day computing tasks, giving them the unique ability for practical realization.
Focusing on logic circuits that derive from Boolean algebra may help estab-
lish foundational principles for obfuscation research. In addition, lessons learned
from polymorphic circuit variation can be applicable to general programs: if the
essence of obfuscation can be captured at this level, it may support an ideal
marriage of theory and practice.

Circuit Representation and Variation: Circuits have a well studied se-
mantic in the form of Boolean algebras and reasoning systems. Natural represen-
tation of Boolean algebras as lattices supports their evaluation under abstract
interpretation. For example, a Boolean algebra f defines a lattice (B, <) where
for any x and y in B, the set {z,y} has a least upper bound defined as =V y and
a greatest lower bound defined as x A y. Boolean algebras have clear relation-
ships between syntax and semantics: physical circuits (traditionally AND, OR,
NOR, NAND, XOR, NXOR, NOT gates) can be derived from logic state-
ments (semantics) and logical expressions have multiple equivalent structural
implementations. For example, the logical A operation maps to a physical OR
gate and has a precise semantic, with the same holding true for the logical V.
Given a complete basis set of operators {V, A, =}, where — represents negation,
we can express any programmatic functionality. In addition, the lattice (B, <)
immediately derives laws for idempotence, commutativity, associativity, absorp-
tion, partial orders for equivalence, and partial orders for implication. Circuit
variation (a structural concept) is ultimately a reflection of Boolean logic varia-
tion (a semantic concept). We can formally define any variation technique as an
application of one or more logic theorems.

Logical Redundancy and Reduction: In digital logic applications, con-
siderable research has been geared at reducing circuits to their smallest (logical)
form for efficiency and cost. Theoretically, obfuscators are allowed a polynomial
overhead in circuit features such as size or depth. Practically, any overhead intro-
duced might be viewed as a step backwards. Assuming that circuit candidates for
obfuscation are in a minimally reduced form to begin with, circuit variation effec-
tively introduces logical redundancy. Variation (aiming to achieve obfuscation)
would essentially work backwards from the viewpoint of Boolean logic reduction.



Laws of idempotence, identity (0 and 1), complementation, and involution would
provide the necessary generation mechanism for expanding terms. For example,
reduction would replace the function Fyp = (AV BV C)A—-(AAN-BA-C)A=C
with its reduced form Fy = B A =C via repeated application of logic laws. Go-
ing in reverse, variation would expand the function Fy = B A =~C' forward and
Fy=(AVvBVC)A-(AA-BA-C)A-C represents one possible expansion.
As a key observation, redundancy introduced by variation algorithms should be
reducible. From empirical study [38, 30], any single transformation (an aspect of
confusion) is trivially reducible; however, combinations of overlapping redundan-
cies (an aspect of diffusion) may not be removable via heuristic methods. These
observations validate Cohen’s [39] original approach to programmatic transfor-
mation using confusion/diffusion primitives. Redundancy and reduction form
a primary analysis aspect of circuits, where Boolean logic reduction serves as
an adversarial analysis vector. Other circuit features such as topology, signals,
components, and control provide primary means for assessing loss of abstraction.

4 Conclusions

Empirical study of practical obfuscation can be a trial and error method. Defin-
ing security properties of interest and developing variation algorithms that ob-
scure those properties in a quantitative approach would serve to validate prac-
tical techniques. Several questions of interest arise in this pursuit:

How do we characterize the polymorphic white-box variation process?

How do we know when variation becomes obfuscation (a loss of abstraction)?
How do we compare different obfuscation algorithms?

How do we quantitatively asses the overhead of introduced redundancy with
the protection gained?

Ll e

As a way forward, formal analysis frameworks such as abstract interpretation
and Boolean logic algebras provide a good starting point that may ultimately
bring theory and practice closer together.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. Electronic Colloquium on
Computational Complexity 8 (2001)

2. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: Proc. of the 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’05), Washington, DC, USA, IEEE Computer Society (2005) 553—
562

3. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Proceedings
of the 4th conference on Theory of cryptography. TCC’07, Berlin, Heidelberg,
Springer-Verlag (2007) 194-213

4. Yasinsac, A., McDonald, J.T.: Tamper resistant software through intent protection.
Intl Journal Network Security 7 (2008) 370-382



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfus-
cation. In: EUROCRYPT. (2004) 20-39

Wee, H.: On obfuscating point functions. In: Proc.of the 37th Annual ACM
Symposium on Theory of Computing (STOC ’05), New York, NY, USA, ACM
(2005) 523-532

Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely ob-
fuscating re-encryption. In: TCC. (2007) 233-252

Chandran, N., Chase, M., Vaikuntanathan, V.: Collusion resistant obfuscation and
functional re-encryption. IACR Cryptology ePrint Archive 2011 (2011) 337
Hofheinz, D., Malone-Lee, J., Stam, M.: Obfuscation for cryptographic purposes.
Journal of Cryptology 23 (2010) 121-168 10.1007/s00145-009-9046-1.

Hada, S., Sakurai, K.: A note on the (im)possibility of using obfuscators to trans-
form private-key encryption into public-key encryption. In Miyaji, A., Kikuchi,
H., Rannenberg, K., eds.: Advances in Information and Computer Security. Vol-
ume 4752 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg
(2007) 1-12 10.1007/978-3-540-75651-4.

Narayanan, S., Raghunathan, A., Venkatesan, R.: Obfuscating straight line arith-
metic programs. In: Proceedings of the nineth ACM workshop on Digital rights
management. DRM 09, New York, NY, USA, ACM (2009) 47-58

Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Proceedings
of the 28th Annual conference on Cryptology: Advances in Cryptology. CRYPTO
2008, Berlin, Heidelberg, Springer-Verlag (2008) 39-56

Beaucamps, P., Filiol, E.: On the possibility of practically obfuscating programs
towards a unified perspective of code protection. Journal in Computer Virology 3
(2007) 3-21

Walenstein, A., Mathur, R., Chouchane, M.R., Lakhotia, A.: Normalizing meta-
morphic malware using term rewriting. In: SCAM ’06: Proceedings of the Sixth
IEEE, Washington, DC, USA, IEEE Computer Society (2006) 75-84

Dalla Preda, M., Giacobazzi, R., Debray, S., Coogan, K., Townsend, G.: Modelling
metamorphism by abstract interpretation. In: Proc. of the 17th. International
Static Analysis Symposium (SAS). (2010)

Dalla Preda, M., Giacobazzi, R.: Semantic-based code obfuscation by abstract
interpretation. In: ICALP. (2005) 1325-1336

Majumdar, A., Thomborson, C.: Manufacturing opaque predicates in distributed
systems for code obfuscation. In: ACSC ’06: Proceedings of the 29th Australasian
Computer Science Conference, Darlinghurst, Australia, Australia, Australian Com-
puter Society, Inc. (2006) 187-196

Collberg, C., Thomborson, C.: Watermarking, tamper-proofing, and obfuscation
- tools for software protection. IEEE Transactions on Software Engineering 28
(2002) 735-746

Madou, M., Anckaert, B., Moseley, P., Debray, S., Sutter, B.D., Bosschere, K.D.:
Software protection through dynamic code mutation. In: Proc. of the 6th Int”1
Workshop on Information Security Applications. (2005) 194-206

Chikofsky, E., Cross, J.H., I.: Reverse engineering and design recovery: a taxonomy.
Software, IEEE 7 (1990) 13-17

Lakhotia, A., Kumar, E.U., Venable, M.: A method for detecting obfuscated calls in
malicious binaries. IEEE Transactions on Software Engineering 31 (2005) 955-968
Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware
malware detection. In: Proceedings of IEEE Symposium on Security and Privacy,
Washington, DC, USA, IEEE Computer Society (2005) 32-46



23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Kim, Y.C., McDonald, J.T.: Considering software proteciton for embedded sys-
tems. Crosstalk: The Journal of Defense Software Engineering 22 (2009) 4-8
Chandran, N., Goyal, V., Sahai, A.: New constructions for uc secure computation
using tamper-proof hardware. In Smart, N., ed.: Advances in Cryptology EURO-
CRYPT 2008. Volume 4965 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg (2008) 545-562 10.1007/978-3-540-78967-3.

Ding, N., Gu, D.: A general and efficient obfuscation for programs with tamper-
proof hardware. In: Proc. of the 7th Int”] Conference on Information Security
Practice and Experience. ISPEC’11, Berlin, Heidelberg, Springer-Verlag (2011)
401-416

Bitansky, N., Canetti, R., Goldwasser, S., Halevi, S., Kalai, Y.T., Rothblum, G.N.:
Program obfuscation with leaky hardware. Cryptology ePrint Archive, Report
2011/660 (2011) http://eprint.iacr.org/.

Castillo, E., Meyer-Baese, U., Garcia, A., Parrilla, L., Lloris, A.: Ipp@hdl: Efficient
intellectual property protection scheme for ip cores. IEEE Trans. Very Large Scale
Integr. Syst. 15 (2007) 578-591

Charbon, E., Torunoglu, I.: Watermarking techniques for electronic circuit de-
sign. In: Proceedings of the 1st international conference on Digital watermarking.
IWDW’02, Berlin, Heidelberg, Springer-Verlag (2003) 147-169

Chakraborty, R.S., Bhunia, S.: Hardware protection and authentication through
netlist level obfuscation. In: Proc. of the IEEE/ACM Int”l Conference on
Computer-Aided Design. ICCAD ’08, Piscataway, NJ, USA, IEEE Press (2008)
674-677

McDonald, J.T., Trias, E.D., Kim, Y.C., Grimaila, M.R.: Using logic-based reduc-
tion for adversarial component recovery. In: Proc. of the 25th ACM Symposium
on Applied Computing (SAC). (2010)

Sander, T., Tschudin, C.: On software protection via function hiding. In: Informa-
tion Hiding. Volume 1525 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg (1998) 111-123 10.1007/3-540-49380-8.

McDonald, J.T., Kim, Y.C., Yasinsac, A.: Software issues in digital forensics. ACM
Operating Systems Review 42 (2008)

Anckaert, B., Sutter, B.D., Bosschere, K.D.: Software piracy prevention through
diversity. In: DRM ’04: Proceedings of the 4th ACM workshop on Digital rights
management, New York, NY, USA, ACM (2004) 63-71

Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theor. Comput. Sci. 277 (2002) 47-103

Dalla Preda, M., Giacobazzi, R., Visentini, E.: Hiding software watermarks in loop
structures. In Alpuente, M., Vidal, G., eds.: SAS. Volume 5079 of Lecture Notes
in Computer Science., Springer (2008) 174-188

Dalla Preda, M., Madou, M., Bosschere, K.D., Giacobazzi, R.: Opaque predicates
detection by abstract interpretation. In Johnson, M., Vene, V., eds.: AMAST.
Volume 4019 of Lecture Notes in Computer Science., Springer (2006) 81-95
Dalla Preda, M., Christodorescu, M., Jha, S., Debray, S.: A semantics-based ap-
proach to malware detection. SIGPLAN Not. 42 (2007) 377-388

McDonald, J.T., Kim, Y.C., Grimaila, M.R.: Protecting reprogrammable hardware
with polymorphic circuit variation. In: Proc. of the 2nd Cyberspace Research
Workshop 2009. (2009)

Cohen, F.B.: Operating system protection through program evolution. Comput.
Secur. 12 (1993) 565-584



