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ABSTRACT 
We provide a theoretical and practical notion of white-box 
security for protecting integrity and privacy of software. 
This notion provides a useful framework to analyze and 
implement software encryption mechanisms. We relate 
strength of program encryption to properties of random 
programs and take a purposefully different view of 
security than the traditionally cited virtual black-box 
method of Barek et al. [1]. We pose and answer several 
questions of interest: what are random programs, do they 
exist, and how can they be used to evaluate effectiveness 
of proposed algorithms. Further, a theoretical foundation 
for program security based on the random oracle model is 
defined using our definition of random programs. 
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1. Introduction 

Securing the intellectual rights of software (in general) and 
protecting the integrity and privacy of mobile programs (in 
particular) are critical for success of distributed computing 
environments. The malicious host problem in mobile agent 
settings provides an interesting case for examining such 
requirements.  In particular, a remote host has full and 
complete control over any code that it executes—leaving 
open the possibility of undetected program alteration. 
Methods for preserving code privacy in such environments 
have included multi-party secure computation, encrypted 
functions, tamper-proof hardware, and obfuscation. 

Obfuscation is the attempt to hide or blur the semantic 
knowledge of a program via heuristic means, increasing 
tamper resistance or protecting proprietary software 
rights—without the need for expensive trusted hardware. 
Even though many obfuscation and tamper-proofing 
techniques have been devised and catalogued [2,3,4,5], 
measuring the effectiveness and strength of such 
techniques has been an elusive task for the research 
community.  

 Early researchers remained skeptical towards the use of 
obfuscation as a provably secure means of program 
protection [1,6,7,8], but deriving a theoretical basis for 
analyzing obfuscation security has been the subject of 
renewed interest [9,10,11,12,13]. We distinguish between 
obfuscation (which does not assume underlying 
cryptographic properties) and program encryption (which 
has properties of traditional cryptographic ciphers but with 
a view towards fully executable programs).  

In this paper, we further our notions of black-box 
security [14] and program recognition [15] to lay 
theoretical foundations based on random programs for 
analyzing obfuscation, tamper-proofing, and piracy 
prevention measures. We also examine the parallels that 

are naturally drawn between the security properties of 
software protection mechanisms and those of 
cryptographic data protection algorithms.  In order to 
understand properties of a random bit stream program, we 
first consider the properties of random bit stream data. 

1.1. Data Protection 

Data ciphers can be defined as algorithms which receive 
plaintext and produce encrypted ciphertext.  Strong ciphers 
do not reveal or leak non-trivial information about the 
plaintext: ciphertext must be non-distinguishable from a 
stream of random bits. Proving security properties of 
asymmetric and symmetric ciphers is accomplished from 
an information theoretic viewpoint (secure regardless of 
computational resources) or complexity viewpoint (secure 
based on limited resources).  By nature of their generality 
and complexity, information theoretic proofs are harder to 
produce. 

Absolute proofs of security for encryption schemes 
imply that complexity classes P  ≠ NP. Data protection 
strength is therefore often stated by properties such as 
whether breaks are reducible to known hard problems (i.e., 
factoring or finding a discrete logarithm). Asymmetric 
ciphers such as RSA use trapdoor one-way functions based 
on groups or rings to provide the necessary encryption 
engine. Asymmetric proofs are therefore based on number 
theory and are distinctly mathematical in nature. 

Provable security for symmetric ciphers, on the other 
hand, does not rely on a strict number theoretic foundation.  
Symmetric schemes such as DES, AES, and RC4 are based 
on the use of three basic operations: confusion, diffusion, 
and composition. No easy attacks on symmetric schemes 
like DES have been found despite voluminous research 
efforts over the years1 and there are no known proofs, 
mathematical attacks, or reductions to known hard 
problems. Symmetric cryptosystems instead rely on brute 
force exhaustive search as their strength (computational 
complexity), yet are considered viable for data protection 
despite absence of mathematical proof formulations. The 
security properties of both symmetric and asymmetric 
cryptosystems are evaluated in decidedly different 
paradigms 

1.2. Software Protection 

Program encryption, tamper-proofing, watermarking, and 
obfuscation schemes can be likened to symmetric data 
ciphers in many ways. Chief among these similarities are 
that we need a decidedly different paradigm to reason 
about and measure software protection. We suggest such a 
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framework in this paper by posing and answering the 
question of whether random programs exist.  Based on our 
positive assertion, we show how random programs can be 
used to evaluate white-box and black-box security 
properties of protected programs and generalized 
obfuscation methods.  

Considering a second similarity between data protection 
and program protection, the evaluation of data ciphers 
assumes that mechanisms exist which simulate random bit 
strings.  We can compare encrypted data to the output of a 
pseudo-random number generator—which is assumed to 
mimic a truly random number generator given an 
appropriate seed. Program ciphers, likewise, need to have a 
baseline for comparison; we refer to this baseline as the 
“random program”. Encrypted programs, unlike encrypted 
data, must be intelligible to some underlying interpreter or 
execution engine. 

The methods, frameworks, and results for analyzing 
software protection schemes have varied greatly. For 
example, the security characterization of obfuscation has 
been described as non-existent [1], NP-easy [7], derivable 
in limited contexts [9,11], and proven to be NP-hard 
[16,17] / PSPACE-hard [18] based on a specific protection 
mechanisms.  We strongly agree with [1] that not all 
classes of programs can be obfuscated but postulate that 
practical program protection is still feasible short of 
number theoretic proofs of security. 

Comparing data and program ciphers again, obfuscation 
techniques tend to be spurious, heuristic, and limited; data 
encryption algorithms tend to be systematic, provably 
secure, and general in nature. Furthermore, obfuscation 
techniques do not have the goal of trying to produce 
predefined properties of randomness in the transformed 
program and they typically do not rely on the key as the 
basis for transformation in the algorithm (Aucsmith’s 
approach [19] utilizes a key to generated pseudorandom 
blocks of encrypted code that are decrypted just prior to 
execution).  

Data ciphers rely often on Kerckhoff’s principal of 
security: the cryptosystem is secure given full knowledge 
of the system except for the key.  We define program 
encryption mechanisms as those which are general purpose 
in nature, have appropriate recovery mechanisms, and are 
based on a key. These algorithms produce programs which 
have definable properties of randomness. 

Just like symmetric data schemes, program encryption 
techniques do not have to be seen from a purely number 
theoretic viewpoint in order to be useful or to offer strong 
software protection.  Algorithms which rely on confusion, 
diffusion, and composition strategies are not necessarily 
weaker than mathematically based function 
transformations such as homomorphic encryption schemes 
[20]. However, a new measurement framework is needed 
to allow researchers to frame and consider security 
properties of their techniques.   

The remainder of our paper flows accordingly: section 2 
defines the notion of random programs and presents 
questions for consideration.  Section 3 discusses the notion 
of confusion and diffusion as it applies to executably 

encrypted programs—as opposed to programs encrypted 
by data ciphers that become non-executable. Section 4 
defines our theoretical foundation for security based on 
random programs using a random oracle model.  Section 5 
points the reader to related works and section 6 
summarizes contributions of this work. 

2. Random Programs 

Like a random bit stream, the purpose of a random 
program may not be obvious at first glance. We suggest 
several notions to define "random program" properties.  

First of all, random programs are legal program. By 
definition, a legal program is syntactically and 
grammatically correct.  Random programs also must 
terminate on all input. Termination may be dependent on 
the underlying interpreter or environment and can range 
from reaching the last program statement, executing a 
HALT instruction, reaching a final state, and so on. 

In order to utilize random program notions in protecting 
programs, we must answer three important theoretical 
questions: 

Do random programs exist?  

Can we generate random programs from non random 
programs? 

Can random programs preserve functionality of the 
original program? 

2.1. Random Bit Stream Programs 

We address first the most important question: do random 
programs exits? One notion of a random program is that 
the digitized program is indistinguishable from a random 
bit stream, i.e. that it has no discernable bit patterns, each 
bit is equally likely to be zero or one, and any sub-string of 
any reasonable length has approximately the same number 
of zero's as it has ones.  

We illustrate this notion with an abstract machine with 
a saturated instruction space, e.g. a machine with four 
operations, sixteen four bit registers and where all 
operations have two four bit operands and ten bit 
instructions (table 1). Program output is reflected in the 
contents of the registers upon program termination. Then 
any bit stream whose length is divisible by ten represents a 
valid program in this architecture.  

Theorem 1.  Random programs exist in the Ten Bit 
Instruction Architecture (TBIA). 

Proof:  Generate p', a random bit stream of length 10c, 
where c is an arbitrarily large constant. Then 
with instructions interpreted serially from 
beginning to end, p' is a random program in 
TBIA.  

1. p' is a legal program.  
2. It has a meaning 
Moreover, p' is random in every reasonable sense of 
the term in that p' has no patterns in its:  



3. static representation, else it would not have been a 
random bit stream. 

4. data representations  
5. control flow  

QED 

Op Opnd 1 Opnd 2 Description 
LD Rega Regb Copy values fm regb to rega 

LDV Rega Regb Copy values fm opb to rega 
ADD Rega Regb Add regs a&b, trunc result in rega 
MUL Rega Regb Mult regs a&b, trunc result in rega 

Table 1. Ten Bit Instruction Machine 

2.2. Composition 

We would (of course) like to extend these results to more 
functional architectures in the future. In order to do so, it 
may be possible to use the important notion of 
composition. Here we ask a second question: can random 
programs be created from other random programs? It may 
seem that the composition (catenation) of two random 
programs is a random program, but we point out that, 
recursive composition leaves a clear pattern (repeated 
segment(s)). However, the program resulting from 
concatenation of atomic (independent) random segments is 
random.  

2.3. Random Instruction Selection Programs 

TBIA clearly illustrates that random programs exist. We 
now extend this notion to a more complex machine were 
the instruction space is not saturated. For example, extend 
TBIA to include a fifth operator, say the shift operator that 
shifts left one bit the value in Rega and stores the result in 
Regb:   
 

Op Opnd 1 Opnd 2 Description 
SFT Rega Regb Shft Rega left 1 bit-> Store Regb 

 
To accommodate the additional instruction, we may 
increase the operator length to three bits. Thus, a random 
bit stream interpreted as a program in TBIA may contain 
illegal instructions. To address architectures where the 
operator space is not saturated, we may think of a random 
program as having the operators equally distributed across 
the program.  

In this scenario, we generate a random program by 
randomly selecting each operator from all possible 
operators and similarly selecting the operands. Programs 
generated in this way have random properties similar to 
those in TBIA, such as having a similar count of each 
instruction type, no patterns among operands, and no 
observable patterns between instructions. During 
execution, the data and control flow reflect the random 
properties of the instructions.  

The examples in TBIA and its extension clearly 
illustrate that our model need not be complex or 
sophisticated to allow random programs. We next consider 
more sophisticated random programs. Random selection 

could be used in TBIA architecture to produce random 
programs. Its added value is that random selection allows a 
systematic way to generate random programs that avoid 
illegal instructions. We again rely on random selection to 
advance the notion of random programs to more 
sophisticated architectures. 

2.4. Random Function Selection Programs (RFSP) 

To extend the notion of random programs beyond the 
simple architecture of TBIA, think of a random program as 
a collection of higher level structures, composed with no 
discernable pattern or plan. For example, consider a large 
library of random program segments i.e. random programs 
that may be incorporated into another program without 
modification. We can compose2 selected segments to 
create another, larger program, but it is not clear which 
randomness properties we preserve in the composition.  

In a simple architecture like TBIA, it may be possible to 
recognize usable patterns in the segments, even though 
they are randomly created. For example, in a one-bit 
architecture, functionality of every segment is defined as 
one of the following: 

1. 0->0, 1->0 
2. 0->1, 1->0 
3. 0->0, 1->1 
4. 0->1, 1->1 

Thus, by purposefully selecting segments, the composition 
may not be random or may even have a usable function 
with obvious pattern. This concern diminishes rapidly as 
the architectural complexity increases, since randomly 
generated segments are less likely to have a usable, 
recognizable function.  

Still, we may also increase the confusion of generated 
RFSPs by governing segment selection. We retain 
reference to TBIA because it is sufficiently simple to 
illustrate our concepts, yet complex enough to give a 
flavor of its strength.  

Given a large constant cl (e.g. > 100) a small constant cs 
(say 10< cs <30), and an integer l, the following algorithm 
will generate RFSPs of length l*cs statements. 

1. Generate cl * cs random statements.  
2. Partition the statements into cl random segments 

of length cs. Number the segments from one to cl. 
3. Create a program p by randomly selecting l 

segments (without replacement) and concatenate 
them. 

4. p is an RFSP. 

                                                           
2 In TBIA composition, consists of concatenation. We recognize the 

administrative actions necessary in higher level languages and posit 
that these are well understood and that segment compatibility issues 
can be overcome reasonably easily. 



Clearly, p is a random program. Were replacement 
allowed, there would be a possibility of including the same 
segment more than once, resulting in a discernable pattern 
and diluting p's randomness. However, we observe that, 
because of the random construction, these patterns reveal 
very little about the program. This is easily seen if we 
think of each segment as a named subroutine and replace 
each segment with its name and arguments to create p'. 
Then p' is a random program, since the repeated 
subroutines are randomly placed. 

A final extension of this notion is to consider randomly 
composing non-random segments. Clearly, this injects 
patterns into the code. Again, if each of the segments are 
named and are replaced in p with their names, p is a 
random program. 

2.5. Random Turing Machines 

Finally, we consider random programs as Turing 
machines. Consider a Turing machine T = {Q, Γ, S, b, F, 
δ} where: 

Q is a finite set of states  
Γ is a finite set of the tape alphabet  
S ∈ Q is the initial state  
b ∈ Γ is the blank symbol  
F ⊆ Q is the set of final or accepting states  
δ transition function: Q x  Γk -> Q x (Γ x {L, R, S})k 

Following our pattern, we construct a random Turing 
machine t using the following algorithm. 

1. Randomly select a small number of states and 
number them 1-i. 

2. Similarly, select a small alphabet numbered 1-j. 
3. Randomly select the start state from the state 

space. 
4. For the transition function, for each state and each 

alphabet member, randomly select: 
a) A head movement from {R, L} 
b) An operation from {write, none} 
c) An alphabet element to write 
d) A state to transition to  

Then t is a random Turing machine. 

2.6. Section Summary 

The consistent theme is that while there may be several 
ways to think about random programs, each type of 
randomness has discernable properties, just like random bit 
streams. The more we know about random program 
properties, the more likely we will be able to generate 
intentioned programs that reflect random program 
properties; this is our goal. 

3. Program Encryption 

Program encryption requires the encryptor to 
systematically transform and confuse p into p’ so that an 
adversary cannot learn anything about program intent by 

analyzing the static code structure or by observing 
program execution in great detail. The confusion must 
make the code and all possible execution paths that it 
produces display properties of random programs.  

3.1. Confusion 

Any program encryption approach must confuse and 
diffuse the original program statements. As with data 
encryption, program encryption techniques must 
aggressively scramble or confuse the original program 
statements, systematically manipulating them with 
randomizing substitutions.  

3.2. Diffusion 

This confusing must be distributed across the original 
program with operations that move confused code 
unpredictably, based in part on the confused program itself 
so that the manipulations create diffusion. 

3.3. Blind vs. Effective Tampering 

The worst case mobile agent risk is a host that performs 
strict denial of service where the agent is starved for 
resources, provided the wrong information, or destroyed 
without execution or migration. No known methods other 
than tamper-proof hardware can effectively prevent these 
actions by the remote host, but detection is possible given 
proper security mechanisms such as trusted parties and 
timed execution limits.  We refer to this form of alteration 
as blind tampering because at most an adversarial host can 
prevent or circumvent correct program execution. 

Effective tampering, on the other hand, deals with 
adversaries who execute remote agents but intend to alter 
the normal execution of the code to gain some benefit.  
Such threats include alteration of the agent itinerary, code 
replay attacks, changing execution pathways, and 
discovery of proprietary algorithms.  Though blind and 
effective tampering attacks are hard to deal with, the 
ultimate goal for agent security is to reduce effective 
tampering to blind tampering.  

Consider non-Byzantine faults which do not terminate a 
program: we would prefer the program to crash instead of 
continuing to execute with erroneous or possibly corrupted 
results. The error in this case is at least identifiable as a 
failure. For Byzantine program errors in mobile agents, 
strict denial of service is easier to detect and recover from 
than partial denials of service where adversaries effectively 
alter mobile code for their own malicious intent without 
detection.  

Prevention of effective tampering is the desired goal not 
only for mobile agents but for general software protection 
mechanisms.  Encrypted programs because of their random 
properties would reduce denial of service attacks to blind 
tampering.  We consider next the definition of black-box 
and white-box security in terms of random programs. 

 
 



4. Evaluating Program Confusion: Random Oracle 

In order to evaluate the effectiveness of software 
protection mechanisms, baseline security characteristics 
must be established in terms of random programs.  In [14], 
we elaborate the SETS program encryption mechanism 
that provides black-box perfect secrecy; we reintroduce in 
definition 1 our statement of strong black-box security. 
SETS defines how program p can be effectively 
transformed into a semantically different version p’ that 
produces pseudo-random data output given normal 
program input.  Such a technique disallows an adversary 
from using any set of observed I/O pairs of program p’ for 
the purpose of black-box algorithm analysis, but allows the 
original program owner to transform any result y’ back to 
its intended y.   

Definition 1: Strong Black-box security 

Given program p’  
1. implements program encryption algorithm E 
 p’ = E (p) 
2. takes input x 
3. produces output y = p(x) 

After knowing any n I/O pairs {(x1, p’(x1), (x2, p’(x2), 
…, (xn-1, p’(xn-1), (xn, p’(xn))}, an adversary that 
supplies any set of subsequent input {xk, xk+1, xk+2,…} 
cannot correctly predict in polynomial time either the 
correct outputs {p’(xk), p’(xk+1), p’(xk+2),…} of the 
obfuscated program p’ or the correct outputs {p(xk), 
p(xk+1), p(xk+q),…} of the original program p. 

In order to effectively measure the protective qualities of a 
program encryption, we must assume that an adversary has 
full access to the executable program. Although white-box 
cryptography is defined in certain contexts as the ability to 
protect secret keys in untrusted host environments [21,22], 
we refer to white-box security in the general sense as the 
ability to shield pertinent program information from an 
adversary. This shielding assumes the adversary can 
generate any n set of I/O pairs via execution of the 
obfuscated program p’ AND assumes the adversary has 
full access to the executable code of p’ itself.   

We define white-box strength of program encryption 
based on the existence of a random program oracle. We 
have demonstrated the existence of random programs with 
TBIA and described our goal to create intentioned 
programs that reflect random program properties. We 
assume the existence of a random program oracle because 
of the general existence of any random oracle that 
simulates creation of random data strings. If we can 
simulate the creation of random data strings, then we can 
simulate the creation of random programs, as discussed in 
section 2. 

Given the assumption that we want to protect a program 
p from an adversary who can observe the actions of an 
encrypted program p’, we say that under white-box 
security the adversary who has possession of p’ should not 

be able to deduce any part of p that would give him greater 
benefit. Figure 1 illustrates our model where the oracle 
performs two functions: when given a program, it can 
generate an encrypted version of that program based on a 
predefined algorithm E(p) OR it can generate a random 
program from the set of all random programs, defined in 
section 2.  

The adversary sends an original program p to the oracle 
to be encrypted based on an underlying algorithm, E(p).  
The algorithm can be any tamper proofing, obfuscation, 
and piracy prevention mechanisms. The oracle returns the 
corresponding encrypted program p′= E(p). as shown 
below in Figure 1 via the top two arrows labeled 1 and 2.  

After the adversary builds some polynomial history of 
pairs, he generates and sends the oracle a program pn+1 as 
shown by Figure 1, circle 3. The oracle then returns 1ˆ +np  
(Figure 1, circle 4) and the adversary is given a decision to 
make. The question is whether the program 1ˆ +np  given by 
the oracle is the encrypted version of program pn+1’ = 
E(pn+1). or if it is a random program.  

 
Figure 1: Random Program Oracle 

The adversary attempts to make his prediction by returning 
bit b ∈ {0, 1} corresponding to the guess of either PR or 
p’n+1 as shown by Figure 1, circle 5 and described in 
definition 2 of white-box security below.  

Definition 2: White-box security 

Given access to the random program oracle which 
transforms programs based on some underlying 
algorithm E(p) into an encrypted version p’, and given 
full access to any encrypted  program p’x:  

After knowing any n pairs of original and encrypted 
programs {(p1, p’1), (p2, p’2), …, (pn-1, p’n-1), (pn, 
p’n))}, an adversary that supplies a subsequent 
program pn+1 will receive 1ˆ +np  from the oracle which 
is either: a random program (PR) or the encrypted 
version of the program pn+1’ = E(pn+1).,  
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To ensure provable security, the probability that the 
adversary is able to predict either the real encrypted 
program (p’n+1) from a random program (PR) is less 
than or equal to ½ + ε, where ε is the negligible error 
probability.  

Having defined the properties of random programs in the 
previous sections, we thus achieve a computational 
indistinguishability for proposed encryption algorithms 
based on random programs and the random oracle model.  

5. Related Works 

Random programs are an idealized tool that can be used to 
reason about security properties of software protection 
mechanisms.  A growing body of work exists already on 
both theoretical and practical application of software 
protection techniques [1,2,3]. Protecting embedded keys, 
program integrity, proprietary algorithms, and digital 
rights are among the most common uses to date [13]. 
Protection mechanisms can be loosely categorized as 
piracy prevention, tamperproofing, obfuscation, 
watermarking, and trusted computing [2].   

Though software protection mechanisms have different 
goals (copy prevention, license enforcement, copy 
detection, trade secret protection, etc.), random programs 
can be used as baseline tool for comparing relative 
strengths and weaknesses of various techniques.  We focus 
on techniques more specific to mobile coding paradigms: 
code obfuscation, mobile cryptography, and secure 
multiparty computations.   

Obfuscation is the altering of the syntax of a program 
into a less readable form, while maintaining the same I/O 
relationships and function of the program [4,5,10,19]. The 
goal is to reduce the cognitive understanding of a given 
program. In [2], Naumovich and Memon describe 
obfuscation as the means to disguise or hide the presence 
of other protection mechanisms. Several obfuscation 
techniques have been developed that are similar to 
compiler optimization techniques: variable splitting, 
interleaving methods, opaque predicates, and reducing 
flow-graphs to name a few [11,16,17,18].  

Mobile cryptography [20] is a form of secure function 
evaluation designed to provide provably secure code 
privacy in the general case.  Unfortunately, its 
mathematical foundation on homomorphic properties 
limits implementation to classes of rational functions.  
Work by Lee et al. [23] has produced a hybrid approach 
that utilizes function composition and homomorphic 
properties to protect code privacy and integrity.  

When multiple agent parties are involved in a secure 
computation, several schemes can be used to effectively 
create white box protection (see [24] for a brief survey). 
Other implementation specific white-box cryptographic 
approaches have been posed in [21,22] to prevent 
extraction of keys within a program implementing data 
ciphers such as AES and DES.  

Several notions have been propose define the cognitive 
understanding a programmer has concerning a specific 

piece of software.  Zero-knowledge [8], random variables 
[9], entropy/perfect secrecy [25], virtual black-box [1], and 
the “knowability” of a function [14] are all various 
methods used to characterize this knowledge. Our random 
program model provides a practical framework for 
defining the semantic meaning of software that correlates 
to the traditional notions of a data encryption cipher. 

6. Conclusion  

The notion of a random program as a tool to measure 
strength of program ciphers and software protection is a 
novel and useful concept.  We have presented in this paper 
our framework for modeling, viewing, and analyzing 
program encryption based on random programs.  We have 
proved by demonstration that random programs exist and 
have given several initial properties that characterize 
random programs.  We have given a definition of program 
encryption based upon random programs and then 
provided a model by which white-box and black-box 
security attributes can be evaluated for a given encrypted 
program using a random oracle model.   

We plan to continue development of a formalized 
mathematical framework defining characteristics of 
random programs, produce and show empirical evidence 
that generalized methods for randomizing programs exist, 
and expand the architectures by which random programs 
can be created and verified.   
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