

OF UNICORNS AND RANDOM PROGRAMS

ABSTRACT
We provide a theoretical and practical notion of white-box
security for protecting integrity and privacy of software.
This notion provides a useful framework to analyze and
implement software encryption mechanisms. We relate
strength of program encryption to properties of random
programs and take a purposefully different view of
security than the traditionally cited virtual black-box
method of Barek et al. [1]. We pose and answer several
questions of interest: what are random programs, do they
exist, and how can they be used to evaluate effectiveness
of proposed algorithms. Further, a theoretical foundation
for program security based on the random oracle model is
defined using our definition of random programs.

KEY WORDS
Software agents, program encryption, mobile agent
security, tamper proof software

1. Introduction

Securing the intellectual rights of software (in general) and
protecting the integrity and privacy of mobile programs (in
particular) are critical for success of distributed computing
environments. The malicious host problem in mobile agent
settings provides an interesting case for examining such
requirements. In particular, a remote host has full and
complete control over any code that it executes—leaving
open the possibility of undetected program alteration.
Methods for preserving code privacy in such environments
have included multi-party secure computation, encrypted
functions, tamper-proof hardware, and obfuscation.

Obfuscation is the attempt to hide or blur the semantic
knowledge of a program via heuristic means, increasing
tamper resistance or protecting proprietary software
rights—without the need for expensive trusted hardware.
Even though many obfuscation and tamper-proofing
techniques have been devised and catalogued [2,3,4,5],
measuring the effectiveness and strength of such
techniques has been an elusive task for the research
community.

 Early researchers remained skeptical towards the use of
obfuscation as a provably secure means of program
protection [1,6,7,8], but deriving a theoretical basis for
analyzing obfuscation security has been the subject of
renewed interest [9,10,11,12,13]. We distinguish between
obfuscation (which does not assume underlying
cryptographic properties) and program encryption (which
has properties of traditional cryptographic ciphers but with
a view towards fully executable programs).

In this paper, we further our notions of black-box
security [14] and program recognition [15] to lay
theoretical foundations based on random programs for
analyzing obfuscation, tamper-proofing, and piracy
prevention measures. We also examine the parallels that

are naturally drawn between the security properties of
software protection mechanisms and those of
cryptographic data protection algorithms. In order to
understand properties of a random bit stream program, we
first consider the properties of random bit stream data.

1.1. Data Protection

Data ciphers can be defined as algorithms which receive
plaintext and produce encrypted ciphertext. Strong ciphers
do not reveal or leak non-trivial information about the
plaintext: ciphertext must be non-distinguishable from a
stream of random bits. Proving security properties of
asymmetric and symmetric ciphers is accomplished from
an information theoretic viewpoint (secure regardless of
computational resources) or complexity viewpoint (secure
based on limited resources). By nature of their generality
and complexity, information theoretic proofs are harder to
produce.

Absolute proofs of security for encryption schemes
imply that complexity classes P ≠ NP. Data protection
strength is therefore often stated by properties such as
whether breaks are reducible to known hard problems (i.e.,
factoring or finding a discrete logarithm). Asymmetric
ciphers such as RSA use trapdoor one-way functions based
on groups or rings to provide the necessary encryption
engine. Asymmetric proofs are therefore based on number
theory and are distinctly mathematical in nature.

Provable security for symmetric ciphers, on the other
hand, does not rely on a strict number theoretic foundation.
Symmetric schemes such as DES, AES, and RC4 are based
on the use of three basic operations: confusion, diffusion,
and composition. No easy attacks on symmetric schemes
like DES have been found despite voluminous research
efforts over the years1 and there are no known proofs,
mathematical attacks, or reductions to known hard
problems. Symmetric cryptosystems instead rely on brute
force exhaustive search as their strength (computational
complexity), yet are considered viable for data protection
despite absence of mathematical proof formulations. The
security properties of both symmetric and asymmetric
cryptosystems are evaluated in decidedly different
paradigms

1.2. Software Protection

Program encryption, tamper-proofing, watermarking, and
obfuscation schemes can be likened to symmetric data
ciphers in many ways. Chief among these similarities are
that we need a decidedly different paradigm to reason
about and measure software protection. We suggest such a

1 Observation from RSA Security, http://www.rsasecurity.com

framework in this paper by posing and answering the
question of whether random programs exist. Based on our
positive assertion, we show how random programs can be
used to evaluate white-box and black-box security
properties of protected programs and generalized
obfuscation methods.

Considering a second similarity between data protection
and program protection, the evaluation of data ciphers
assumes that mechanisms exist which simulate random bit
strings. We can compare encrypted data to the output of a
pseudo-random number generator—which is assumed to
mimic a truly random number generator given an
appropriate seed. Program ciphers, likewise, need to have a
baseline for comparison; we refer to this baseline as the
“random program”. Encrypted programs, unlike encrypted
data, must be intelligible to some underlying interpreter or
execution engine.

The methods, frameworks, and results for analyzing
software protection schemes have varied greatly. For
example, the security characterization of obfuscation has
been described as non-existent [1], NP-easy [7], derivable
in limited contexts [9,11], and proven to be NP-hard
[16,17] / PSPACE-hard [18] based on a specific protection
mechanisms. We strongly agree with [1] that not all
classes of programs can be obfuscated but postulate that
practical program protection is still feasible short of
number theoretic proofs of security.

Comparing data and program ciphers again, obfuscation
techniques tend to be spurious, heuristic, and limited; data
encryption algorithms tend to be systematic, provably
secure, and general in nature. Furthermore, obfuscation
techniques do not have the goal of trying to produce
predefined properties of randomness in the transformed
program and they typically do not rely on the key as the
basis for transformation in the algorithm (Aucsmith’s
approach [19] utilizes a key to generated pseudorandom
blocks of encrypted code that are decrypted just prior to
execution).

Data ciphers rely often on Kerckhoff’s principal of
security: the cryptosystem is secure given full knowledge
of the system except for the key. We define program
encryption mechanisms as those which are general purpose
in nature, have appropriate recovery mechanisms, and are
based on a key. These algorithms produce programs which
have definable properties of randomness.

Just like symmetric data schemes, program encryption
techniques do not have to be seen from a purely number
theoretic viewpoint in order to be useful or to offer strong
software protection. Algorithms which rely on confusion,
diffusion, and composition strategies are not necessarily
weaker than mathematically based function
transformations such as homomorphic encryption schemes
[20]. However, a new measurement framework is needed
to allow researchers to frame and consider security
properties of their techniques.

The remainder of our paper flows accordingly: section 2
defines the notion of random programs and presents
questions for consideration. Section 3 discusses the notion
of confusion and diffusion as it applies to executably

encrypted programs—as opposed to programs encrypted
by data ciphers that become non-executable. Section 4
defines our theoretical foundation for security based on
random programs using a random oracle model. Section 5
points the reader to related works and section 6
summarizes contributions of this work.

2. Random Programs

Like a random bit stream, the purpose of a random
program may not be obvious at first glance. We suggest
several notions to define "random program" properties.

First of all, random programs are legal program. By
definition, a legal program is syntactically and
grammatically correct. Random programs also must
terminate on all input. Termination may be dependent on
the underlying interpreter or environment and can range
from reaching the last program statement, executing a
HALT instruction, reaching a final state, and so on.

In order to utilize random program notions in protecting
programs, we must answer three important theoretical
questions:

Do random programs exist?

Can we generate random programs from non random
programs?

Can random programs preserve functionality of the
original program?

2.1. Random Bit Stream Programs

We address first the most important question: do random
programs exits? One notion of a random program is that
the digitized program is indistinguishable from a random
bit stream, i.e. that it has no discernable bit patterns, each
bit is equally likely to be zero or one, and any sub-string of
any reasonable length has approximately the same number
of zero's as it has ones.

We illustrate this notion with an abstract machine with
a saturated instruction space, e.g. a machine with four
operations, sixteen four bit registers and where all
operations have two four bit operands and ten bit
instructions (table 1). Program output is reflected in the
contents of the registers upon program termination. Then
any bit stream whose length is divisible by ten represents a
valid program in this architecture.

Theorem 1. Random programs exist in the Ten Bit
Instruction Architecture (TBIA).

Proof: Generate p', a random bit stream of length 10c,
where c is an arbitrarily large constant. Then
with instructions interpreted serially from
beginning to end, p' is a random program in
TBIA.

1. p' is a legal program.
2. It has a meaning
Moreover, p' is random in every reasonable sense of
the term in that p' has no patterns in its:

3. static representation, else it would not have been a
random bit stream.

4. data representations
5. control flow

QED

Op Opnd 1 Opnd 2 Description
LD Rega Regb Copy values fm regb to rega

LDV Rega Regb Copy values fm opb to rega
ADD Rega Regb Add regs a&b, trunc result in rega
MUL Rega Regb Mult regs a&b, trunc result in rega

Table 1. Ten Bit Instruction Machine

2.2. Composition

We would (of course) like to extend these results to more
functional architectures in the future. In order to do so, it
may be possible to use the important notion of
composition. Here we ask a second question: can random
programs be created from other random programs? It may
seem that the composition (catenation) of two random
programs is a random program, but we point out that,
recursive composition leaves a clear pattern (repeated
segment(s)). However, the program resulting from
concatenation of atomic (independent) random segments is
random.

2.3. Random Instruction Selection Programs

TBIA clearly illustrates that random programs exist. We
now extend this notion to a more complex machine were
the instruction space is not saturated. For example, extend
TBIA to include a fifth operator, say the shift operator that
shifts left one bit the value in Rega and stores the result in
Regb:

Op Opnd 1 Opnd 2 Description
SFT Rega Regb Shft Rega left 1 bit-> Store Regb

To accommodate the additional instruction, we may
increase the operator length to three bits. Thus, a random
bit stream interpreted as a program in TBIA may contain
illegal instructions. To address architectures where the
operator space is not saturated, we may think of a random
program as having the operators equally distributed across
the program.

In this scenario, we generate a random program by
randomly selecting each operator from all possible
operators and similarly selecting the operands. Programs
generated in this way have random properties similar to
those in TBIA, such as having a similar count of each
instruction type, no patterns among operands, and no
observable patterns between instructions. During
execution, the data and control flow reflect the random
properties of the instructions.

The examples in TBIA and its extension clearly
illustrate that our model need not be complex or
sophisticated to allow random programs. We next consider
more sophisticated random programs. Random selection

could be used in TBIA architecture to produce random
programs. Its added value is that random selection allows a
systematic way to generate random programs that avoid
illegal instructions. We again rely on random selection to
advance the notion of random programs to more
sophisticated architectures.

2.4. Random Function Selection Programs (RFSP)

To extend the notion of random programs beyond the
simple architecture of TBIA, think of a random program as
a collection of higher level structures, composed with no
discernable pattern or plan. For example, consider a large
library of random program segments i.e. random programs
that may be incorporated into another program without
modification. We can compose2 selected segments to
create another, larger program, but it is not clear which
randomness properties we preserve in the composition.

In a simple architecture like TBIA, it may be possible to
recognize usable patterns in the segments, even though
they are randomly created. For example, in a one-bit
architecture, functionality of every segment is defined as
one of the following:

1. 0->0, 1->0
2. 0->1, 1->0
3. 0->0, 1->1
4. 0->1, 1->1

Thus, by purposefully selecting segments, the composition
may not be random or may even have a usable function
with obvious pattern. This concern diminishes rapidly as
the architectural complexity increases, since randomly
generated segments are less likely to have a usable,
recognizable function.

Still, we may also increase the confusion of generated
RFSPs by governing segment selection. We retain
reference to TBIA because it is sufficiently simple to
illustrate our concepts, yet complex enough to give a
flavor of its strength.

Given a large constant cl (e.g. > 100) a small constant cs
(say 10< cs <30), and an integer l, the following algorithm
will generate RFSPs of length l*cs statements.

1. Generate cl * cs random statements.
2. Partition the statements into cl random segments

of length cs. Number the segments from one to cl.
3. Create a program p by randomly selecting l

segments (without replacement) and concatenate
them.

4. p is an RFSP.

2 In TBIA composition, consists of concatenation. We recognize the

administrative actions necessary in higher level languages and posit
that these are well understood and that segment compatibility issues
can be overcome reasonably easily.

Clearly, p is a random program. Were replacement
allowed, there would be a possibility of including the same
segment more than once, resulting in a discernable pattern
and diluting p's randomness. However, we observe that,
because of the random construction, these patterns reveal
very little about the program. This is easily seen if we
think of each segment as a named subroutine and replace
each segment with its name and arguments to create p'.
Then p' is a random program, since the repeated
subroutines are randomly placed.

A final extension of this notion is to consider randomly
composing non-random segments. Clearly, this injects
patterns into the code. Again, if each of the segments are
named and are replaced in p with their names, p is a
random program.

2.5. Random Turing Machines

Finally, we consider random programs as Turing
machines. Consider a Turing machine T = {Q, Γ, S, b, F,
δ} where:

Q is a finite set of states
Γ is a finite set of the tape alphabet
S ∈ Q is the initial state
b ∈ Γ is the blank symbol
F ⊆ Q is the set of final or accepting states
δ transition function: Q x Γk -> Q x (Γ x {L, R, S})k

Following our pattern, we construct a random Turing
machine t using the following algorithm.

1. Randomly select a small number of states and
number them 1-i.

2. Similarly, select a small alphabet numbered 1-j.
3. Randomly select the start state from the state

space.
4. For the transition function, for each state and each

alphabet member, randomly select:
a) A head movement from {R, L}
b) An operation from {write, none}
c) An alphabet element to write
d) A state to transition to

Then t is a random Turing machine.

2.6. Section Summary

The consistent theme is that while there may be several
ways to think about random programs, each type of
randomness has discernable properties, just like random bit
streams. The more we know about random program
properties, the more likely we will be able to generate
intentioned programs that reflect random program
properties; this is our goal.

3. Program Encryption

Program encryption requires the encryptor to
systematically transform and confuse p into p’ so that an
adversary cannot learn anything about program intent by

analyzing the static code structure or by observing
program execution in great detail. The confusion must
make the code and all possible execution paths that it
produces display properties of random programs.

3.1. Confusion

Any program encryption approach must confuse and
diffuse the original program statements. As with data
encryption, program encryption techniques must
aggressively scramble or confuse the original program
statements, systematically manipulating them with
randomizing substitutions.

3.2. Diffusion

This confusing must be distributed across the original
program with operations that move confused code
unpredictably, based in part on the confused program itself
so that the manipulations create diffusion.

3.3. Blind vs. Effective Tampering

The worst case mobile agent risk is a host that performs
strict denial of service where the agent is starved for
resources, provided the wrong information, or destroyed
without execution or migration. No known methods other
than tamper-proof hardware can effectively prevent these
actions by the remote host, but detection is possible given
proper security mechanisms such as trusted parties and
timed execution limits. We refer to this form of alteration
as blind tampering because at most an adversarial host can
prevent or circumvent correct program execution.

Effective tampering, on the other hand, deals with
adversaries who execute remote agents but intend to alter
the normal execution of the code to gain some benefit.
Such threats include alteration of the agent itinerary, code
replay attacks, changing execution pathways, and
discovery of proprietary algorithms. Though blind and
effective tampering attacks are hard to deal with, the
ultimate goal for agent security is to reduce effective
tampering to blind tampering.

Consider non-Byzantine faults which do not terminate a
program: we would prefer the program to crash instead of
continuing to execute with erroneous or possibly corrupted
results. The error in this case is at least identifiable as a
failure. For Byzantine program errors in mobile agents,
strict denial of service is easier to detect and recover from
than partial denials of service where adversaries effectively
alter mobile code for their own malicious intent without
detection.

Prevention of effective tampering is the desired goal not
only for mobile agents but for general software protection
mechanisms. Encrypted programs because of their random
properties would reduce denial of service attacks to blind
tampering. We consider next the definition of black-box
and white-box security in terms of random programs.

4. Evaluating Program Confusion: Random Oracle

In order to evaluate the effectiveness of software
protection mechanisms, baseline security characteristics
must be established in terms of random programs. In [14],
we elaborate the SETS program encryption mechanism
that provides black-box perfect secrecy; we reintroduce in
definition 1 our statement of strong black-box security.
SETS defines how program p can be effectively
transformed into a semantically different version p’ that
produces pseudo-random data output given normal
program input. Such a technique disallows an adversary
from using any set of observed I/O pairs of program p’ for
the purpose of black-box algorithm analysis, but allows the
original program owner to transform any result y’ back to
its intended y.

Definition 1: Strong Black-box security

Given program p’
1. implements program encryption algorithm E
 p’ = E (p)
2. takes input x
3. produces output y = p(x)

After knowing any n I/O pairs {(x1, p’(x1), (x2, p’(x2),
…, (xn-1, p’(xn-1), (xn, p’(xn))}, an adversary that
supplies any set of subsequent input {xk, xk+1, xk+2,…}
cannot correctly predict in polynomial time either the
correct outputs {p’(xk), p’(xk+1), p’(xk+2),…} of the
obfuscated program p’ or the correct outputs {p(xk),
p(xk+1), p(xk+q),…} of the original program p.

In order to effectively measure the protective qualities of a
program encryption, we must assume that an adversary has
full access to the executable program. Although white-box
cryptography is defined in certain contexts as the ability to
protect secret keys in untrusted host environments [21,22],
we refer to white-box security in the general sense as the
ability to shield pertinent program information from an
adversary. This shielding assumes the adversary can
generate any n set of I/O pairs via execution of the
obfuscated program p’ AND assumes the adversary has
full access to the executable code of p’ itself.

We define white-box strength of program encryption
based on the existence of a random program oracle. We
have demonstrated the existence of random programs with
TBIA and described our goal to create intentioned
programs that reflect random program properties. We
assume the existence of a random program oracle because
of the general existence of any random oracle that
simulates creation of random data strings. If we can
simulate the creation of random data strings, then we can
simulate the creation of random programs, as discussed in
section 2.

Given the assumption that we want to protect a program
p from an adversary who can observe the actions of an
encrypted program p’, we say that under white-box
security the adversary who has possession of p’ should not

be able to deduce any part of p that would give him greater
benefit. Figure 1 illustrates our model where the oracle
performs two functions: when given a program, it can
generate an encrypted version of that program based on a
predefined algorithm E(p) OR it can generate a random
program from the set of all random programs, defined in
section 2.

The adversary sends an original program p to the oracle
to be encrypted based on an underlying algorithm, E(p).
The algorithm can be any tamper proofing, obfuscation,
and piracy prevention mechanisms. The oracle returns the
corresponding encrypted program p′= E(p). as shown
below in Figure 1 via the top two arrows labeled 1 and 2.

After the adversary builds some polynomial history of
pairs, he generates and sends the oracle a program pn+1 as
shown by Figure 1, circle 3. The oracle then returns 1ˆ +np
(Figure 1, circle 4) and the adversary is given a decision to
make. The question is whether the program 1ˆ +np given by
the oracle is the encrypted version of program pn+1’ =
E(pn+1). or if it is a random program.

Figure 1: Random Program Oracle

The adversary attempts to make his prediction by returning
bit b ∈ {0, 1} corresponding to the guess of either PR or
p’n+1 as shown by Figure 1, circle 5 and described in
definition 2 of white-box security below.

Definition 2: White-box security

Given access to the random program oracle which
transforms programs based on some underlying
algorithm E(p) into an encrypted version p’, and given
full access to any encrypted program p’x:

After knowing any n pairs of original and encrypted
programs {(p1, p’1), (p2, p’2), …, (pn-1, p’n-1), (pn,
p’n))}, an adversary that supplies a subsequent
program pn+1 will receive 1ˆ +np from the oracle which
is either: a random program (PR) or the encrypted
version of the program pn+1’ = E(pn+1).,

 ⎩
⎨
⎧

=Ρ′
+

+
1n

R
1 p'

Pˆ
n

 ε
ε
+≤=

+≤=

++

+

2
1

11

2
1

1

]''ˆPr[
]'ˆPr[

nn

Rn

pp
Pp

To ensure provable security, the probability that the
adversary is able to predict either the real encrypted
program (p’n+1) from a random program (PR) is less
than or equal to ½ + ε, where ε is the negligible error
probability.

Having defined the properties of random programs in the
previous sections, we thus achieve a computational
indistinguishability for proposed encryption algorithms
based on random programs and the random oracle model.

5. Related Works

Random programs are an idealized tool that can be used to
reason about security properties of software protection
mechanisms. A growing body of work exists already on
both theoretical and practical application of software
protection techniques [1,2,3]. Protecting embedded keys,
program integrity, proprietary algorithms, and digital
rights are among the most common uses to date [13].
Protection mechanisms can be loosely categorized as
piracy prevention, tamperproofing, obfuscation,
watermarking, and trusted computing [2].

Though software protection mechanisms have different
goals (copy prevention, license enforcement, copy
detection, trade secret protection, etc.), random programs
can be used as baseline tool for comparing relative
strengths and weaknesses of various techniques. We focus
on techniques more specific to mobile coding paradigms:
code obfuscation, mobile cryptography, and secure
multiparty computations.

Obfuscation is the altering of the syntax of a program
into a less readable form, while maintaining the same I/O
relationships and function of the program [4,5,10,19]. The
goal is to reduce the cognitive understanding of a given
program. In [2], Naumovich and Memon describe
obfuscation as the means to disguise or hide the presence
of other protection mechanisms. Several obfuscation
techniques have been developed that are similar to
compiler optimization techniques: variable splitting,
interleaving methods, opaque predicates, and reducing
flow-graphs to name a few [11,16,17,18].

Mobile cryptography [20] is a form of secure function
evaluation designed to provide provably secure code
privacy in the general case. Unfortunately, its
mathematical foundation on homomorphic properties
limits implementation to classes of rational functions.
Work by Lee et al. [23] has produced a hybrid approach
that utilizes function composition and homomorphic
properties to protect code privacy and integrity.

When multiple agent parties are involved in a secure
computation, several schemes can be used to effectively
create white box protection (see [24] for a brief survey).
Other implementation specific white-box cryptographic
approaches have been posed in [21,22] to prevent
extraction of keys within a program implementing data
ciphers such as AES and DES.

Several notions have been propose define the cognitive
understanding a programmer has concerning a specific

piece of software. Zero-knowledge [8], random variables
[9], entropy/perfect secrecy [25], virtual black-box [1], and
the “knowability” of a function [14] are all various
methods used to characterize this knowledge. Our random
program model provides a practical framework for
defining the semantic meaning of software that correlates
to the traditional notions of a data encryption cipher.

6. Conclusion

The notion of a random program as a tool to measure
strength of program ciphers and software protection is a
novel and useful concept. We have presented in this paper
our framework for modeling, viewing, and analyzing
program encryption based on random programs. We have
proved by demonstration that random programs exist and
have given several initial properties that characterize
random programs. We have given a definition of program
encryption based upon random programs and then
provided a model by which white-box and black-box
security attributes can be evaluated for a given encrypted
program using a random oracle model.

We plan to continue development of a formalized
mathematical framework defining characteristics of
random programs, produce and show empirical evidence
that generalized methods for randomizing programs exist,
and expand the architectures by which random programs
can be created and verified.

References

[1] B. Barak, et al., "On the (Im)possibility of Obfuscating
Programs," Electronic Colloquium on Computational
Complexity Report No. 57, 2001.

[2] G. Naumovich and N. Memon, "Preventing piracy, reverse
engineering, and tampering," Computer, vol. 36, pp. 64-71,
2003.

[3] M. J. Atallah, E. D. Bryant, and M. R. Stytz, "A survey of
anti-tamper technologies," Crosstalk, 2004.

[4] C. S. Collberg and C. Thomborson, "Watermarking, tamper-
proofing, & obfuscation - tools for software protection,"
IEEE Trans. on Software Engin., vol. 28, pp. 735-746, 2002.

[5] C. Linn and S. Debray, "Obfuscation of executable code to
improve resistance to static disassembly," Proceedings of
the 10th ACM Conference on Computer and
Communications Security, pp. 290-299, 2003.

[6] R. Anderson and M. Kuhn, "Tamper resistance — A
cautionary note," in Proceedings of Second Usenix
Workshop on Electronic Commerce, Oakland, CA, 1996.

[7] A. Appel, "Deobfuscation is in NP," unpublished
manuscsript, preprint available from http://www.cs.
princeton.edu/~appel/papers/deobfus.pdf, 2002.

[8] S. Hada, "Zero-knowledge and code obfuscation,"
ASIACRYPT'2000 - Advances in Cryptology, 2000.

[9] N. Varnovsky and V. Zakharov, "On the possibility of
provably secure obfuscating programs," Perspectives of
System Informatics, LNCS 2890, pp. 91-102, 2003.

[10] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji, "Software
obfuscation on a theoretical basis and its implementation,"
IEEE Transactions on Fundamentals, vol. E86-A, 2003.

[11] B. Lynn, M. Prabhakaran, and A. Sahai, "Positive results
and techniques for obfuscation," Eurocrypt'04, 2004.

[12] A. Yasinsac, "Program Obfuscation: [Im] Possibility
Revisited", Electronic Letters (submitted June 2005).

[13] P. C. v. Oorschot, "Revisiting software protection,"
Proceedings of 6th International Information Security
Conference (ISC 2003), LNCS 2851, Bristol, UK, 2003.

[14] W. Thompson, A. Yasinsac, and J. T. McDonald, "Semantic
encryption transformation scheme," in Proceedings of the
International Workshop on Security in Parallel and Dist.
Systems (PDCS 2004), San Francisco, CA, 2004.

[15] A. Yasinsac, J. T. McDonald, and W. C. Thompson,
"Recognizable Programs", Seventh International Conference
on Information and Communications Security, Dec. 10-13,
2005, Springer (Decision Aug 25).

[16] C. S. Collberg, C. Thomborson, and D. Low,
"Manufacturing cheap, resilient, and stealthy opaque
constructs," Proceedings of the 25th ACM Symposium on
Principles of Programming (POPL1998), 1998.

[17] C. Wang, "A security architecture for survivability
mechanisms," PhD thesis, Department of Computer Science,
University of Virginia, 2000.

[18] S. Chow, Y. Gu, H. Johnson and V. A. Zakharov, “An
approach to the obfuscation of control-flow of sequential
computer programs,” Proceedings of the 4th International
Conference on Information Security (ISC 2001), LNCS
2200, pp. 144-155, 2001.

[19] D. Aucsmith, "Tamper-resistant software: an
implementation," Information Hiding, Proceedings of the
1st International Workshop, LNCS 1174, 1996

[20] T. Sander and C. F. Tschudin, "On software protection via
function hiding," LNCS 1525, pp. 111-123, 1998.

[21] S. Chow, P. Eisen, H. Johnson, and P. C. van Oorschot,
"White-box cryptography and an AES implementation,"
Selected Areas in Cryptography (SAC 2002), LNCS, 2003.

[22] S. Chow, P. Eisen, H. Johnson, and P. C. van Oorschot, "A
white-box DES implementation for DRM applications,"
Proceedings of the 2nd ACM Workshop on Digital Rights
Management (DRM 2002), LNCS 2696, pp. 1-15, 2003.

[23] H. Lee, J. Alves-Fos, and S. Harrison, "The construction of
secure mobile agents via evaluating encrypted functions,"
Web Intelligence and Agent System, vol. 2, pp. 1-19, 2004.

[24] J. McDonald. “Hybrid approach for secure mobile agent
computations,” to appear, Secure Mobile Ad-hoc Networks
and Sensors Workshop, MADNES 2005, Sept. 2005.

[25] K. Cartrysse and J.C.A. van der Lubbe, “Secrecy in mobile
code,” 25th Symposium on Information Theory in the
Benelux, pp. 161-168, 2004.

